Karakteristik Sifat Fisiko-Kimia dan Fungsional Pati Sagu Ihur (Metroxylon sylvestre) Dimodifikasi dengan Hidrolisis Asam
Febby Jeanry Polnaya(1*), Alfredo Andelson Huwae(2), Gilian Tetelepta(3)
(1) Jurusan Teknologi Hasil Pertanian, Fakultas Pertanian, Universitas Pattimura, Jl. Ir. M. Putuhena, Kampus Poka, Ambon 97233
(2) Jurusan Teknologi Hasil Pertanian, Fakultas Pertanian, Universitas Pattimura, Jl. Ir. M. Putuhena, Kampus Poka, Ambon 97233
(3) Jurusan Teknologi Hasil Pertanian, Fakultas Pertanian, Universitas Pattimura, Jl. Ir. M. Putuhena, Kampus Poka, Ambon 97233
(*) Corresponding Author
Abstract
The objective of this study was to characterize modified Ihur sago starch as affected by treatment of acid hydrolysis. A completely randomized experimental non-factorial design was used in this research with four levels of treatments, i.e. native ihur sago starch, HCl concentrations of 1.1 N, 2.2 N, or 3.3 N, subsequently. Physical properties such as color, swelling power, solubility, and paste clarity were measured in this research. Moisture, ash, and amylose content were determined as chemical properties, while the resistant starch (RS) content was determined for its functional properties. Results showed that starch treated with acid hydrolysis caused changes to physical properties in comparison with native starch. These included higher (80.93–81.89) degree of whiteness (L*) than native starch (80.29), lower redness (a*) and yellowness (b*) than native (8.26 and 18.24) having the value of 5.13–6.34, and 13.21–15.39, respectively. Acid hydrolysis not only caused a decrease in swelling power (43.88–50.56%), but also an increase in solubility (8.92–12.34%) and paste clarity (74.70–77.73% T) compared to native starch. Higher moisture and ash content having the value of 8.72–15.01% and 0.22–0.37%, correspondingly but lower amylose (18.29–27.22%) and RS content were obtained by acid hydrolysis starch in contrast to native starch. The modified starch has improved heat stability with smaller breakdown viscosity, and setback viscosity less than native starch, and is easily to gelatinize.
ABSTRAK
Penelitian ini bertujuan untuk mengkarakteristik pati sagu ihur alami (PSIA) yang dimodifikasi dengan perlakuan hidrolisis asam. Rancangan yang digunakan yaitu rancangan acak lengkap non-faktorial dengan empat taraf perlakuan yaitu PSIA, hidrolisis asam (PSIHA) menggunakan HCl 1,1 N, 2,2 N, atau 3,3 N. Parameter yang diukur meliputi karakteristik fisik antara lain warna, kemampuan menggelembung, daya larut, kejernihan pasta, dan sifat amilografi. Karakteristik kimia meliputi kadar air, kadar abu, dan amilosa sedangkan karakteristik fungsional yaitu kadar pati resistan (RS). Hasil penelitian menunjukan bahwa perlakuan hidrolisis asam menyebabkan perubahan terhadap sifat fisik warna pati dimana nilai kecerahan (L*) pati hidrolisis asam (80,93–81,89) lebih tinggi dibandingkan PSIA (80,29). Sebaliknya nilai kemerahan (a*) dan kekuningan (b*) PSIHA (5,13–6,34 dan 13,21–15,39) lebih rendah dibandingkan PSIA (8,62 dan 18,24). Perlakuan asam juga menyebabkan kemampuan menggelembung PSIHA (43,88–50,65%) mengalami penurunan dibandingkan PSIA, tetapi meningkatkan daya larut (8,92–12,34%) dan kejernihan pasta (74,70–77,73% T). Untuk sifat kimia, kadar air pati sagu hidrolisis asam (8,72–15,01%) dan kadar abu (0,22–0,37%) relatif lebih tinggi dibandingkan pati alaminya, namun perlakuan asam menurunkan kadar amilosa (18,29–27,22%) dan kadar RS (0,06–0,37%). PSIHA memiliki kestabilan yang lebih baik selama pemanasan dengan breakdown viscosity yang lebih kecil dibandingkan dengan PSIA, serta kecenderungan teretrogradasi lebih rendah, yaitu ditunjukkan nilai setback viscosity yang rendah, dan lebih mudah mengalami gelatinisasi.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Adebowale, K.O., Henle, T., Schwarzenbolz, U., & Doert, T. (2009). Modification and properties of african yam bean (Sphenostylis stenocarpa Hochst. Ex A. Rich.) Harms starch I: Heat moisture treatments and annealing. Food Hydrocolloids, 23(7), 1947–1957.https://doi.org/10.1016/j.foodhyd.2009.01.002.
[AOAC] Association of Official Analytical Chemists. 1984. Official Methods of Analysis of The Association of Official Analytical Chemists. 14th ed. AOAC Inc. Arlington, Virginia.
[AOAC] Association of Official Analytical Chemists. 2007. Official Methods of Analysis of The Association of Official Analytical Chemists, 18th edn. Washington DC.
Aparicio-Saguilán, A., Flores-Huicochea, E., Tovar, J., Gracía-suárez, F., Gutiérrez-Meraz, F., & Bello-Pérez, L.A. (2005). Resistant starch-rich powders prepared by autoclaving of native and lintnerized banana starch: partial characterization. Starch/Stärke, 57(9), 405–412. https://doi.org/10.1002/star.200400386.
Babu, A.S., Parimalavalli, R., & Rudra, S.G. (2015). Effect of citric acid concentration and hydrolysis time on physicochemical properties of sweet potato starches. International Journal of Biological Macromolecules, 80, 557–565. https://doi.org/10.1016/j.ijbiomac.2015.07.020.
Charles, A.L., Chang, Y.H., Ko, W.C., Sriroth, K., & Huang, T.C. (2005). Influence of amylopectin structure and amylose content on the gelling properties of five cultivars of cassava starches. Journal of Agricultural and Food Chemistry, 53(7), 2717-2725. https://doi.org/10.1021/jf048376+.
Falade, K.O. & Ayetigbo, A.E. (2015). Effects of annealing, acid hydrolysis & citric acid modifications on physical and functional properties of starches from four yam (Dioscorea spp.) cultivars. Food Hydrocolloids, 43, 529–539. https://doi.org/10.1016/j.foodhyd.2014.07.008.
Farida, D.N., Rahayu, W.P., & Apriyadi, M.S. (2013). Modifikasi pati garut (Marantha arundinacea) dengan perlakuan hidrolisis asam dan siklus pemanasan-pendinginan untuk menghasilkan pati resisten tipe 3. Jurnal Teknologi Industri Pertanian, 23(1), 61–69.
Fouladi, E. & Nafchi, A.M. (2014). Effects of acid-hydrolysis and hydroxypropylation on functional properties of sago starch. International Journal of Biological Macromolecules, 68, 251–257. https://doi.org/10.1016/j.ijbiomac.2014.05.013.
Gonçalves, P.M., Noreña, C.P.Z., da Silveira, N.P., & Brandelli, A. (2014). Characterization of starch nanoparticles obtained from Araucaria angustifolia seeds by acid hydrolysis and ultrasound. LWT - Food Science and Technology, 58(1), 21–27. https://doi.org/10.1016/j.lwt.2014.03.015.
John, J.K., Raja, K.C.M., Rani, S., Moorthy, S.N., & Eliasson, A. (2002). Properties of arrowroot starch treated with aqueous HCl at ambient temperature. Journal of Food Science, 67(1), 10–14. https://doi.org/10.1111/j.1365-2621.2002.tb11350.x.
Karam, L.B., Grossmann, M.V.E., Silva, R.S.S.F., Ferrero, C., & Zaritzky, N.E. (2005). Gel textural characteristics of corn, cassava and yam starch blends: a mixture surface response methodology approach. Starch/Starke, 57(2), 62–70. https://doi.org/10.1002/star.200400328.
Kim, S.K., Kwak, J.E., & Kim, W.K. (2003). A simple method for estimation of enzyme-resistant starch content. Starch/Stärke, 55(8), 366–368. https://doi.org/10.1002/star.200300199.
Kusnandar, F. (2010). Kimia Pangan Komponen Makro. Jakarta (ID): PT. Dian Rakyat.
Lehmann, U., Rossler, C., Schmiedl, D., & Jacobasch, G. (2003). Production and physicochemical characterization of resistant starch type III derived from pea starch. Nahrung, 47(1), 60–63. https://doi.org/10.1002/food.200390014.
Mayer, A.M. (1986). Polyphenol oxidases in plants-recent progress. Phytochemistry, 26(1), 11–20. https://doi.org/10.1016/S0031-9422(00)81472-7.
Omojola, M.O., Akinkunmi, Y.O., Olufunsho, KO., Egharevba, H.O., & Martins, E.O. (2010). Isolation and physicochemical characterization of cola starch. African Journal Food Agriculture Nutrition Development, 10(7), 2884–2900.
Osunsami, A.T, Akingbala, J.O., & Oguntimein, G.B. (1989). Effect of storage on starch content and modification of cassava starch. Starch/Starke, 41(2), 54–57. https://doi.org/10.1002/star.19890410205.
Palma-Rodrigues, H.M., Agama, A.E., Mendez, M.G., Gonzalez, S.R.A., Vernon, C.E., & Bello, P.L.A. (2012). Effect of acid treatment on the physicochemical and structural characteristics of starches from different botanical sources. Starch/Starke, 64, 115–125. https://doi.org/10.1002/star.201100081.
Picauly, P., Damamain, E., & Polnaya, F.J. (2017). Karakteristik fisiko-kimia dan fungsional pati sagu ihur termodifikasi dengan heat moisture treatment. Jurnal Teknologi dan Industri Pangan, 28(1), 70–77. http://dx.doi.org/10.6066/jtip.2017.28.1.70.
Polnaya, F.J., Talahatu, J., Haryadi, & Marseno, D.W. (2009). Karakterisasi tiga jenis pati sagu (Metroxylon sp.) hidroksipropil. Agritech, 29(2), 87–95.
Pratiwi, W.S.W., Anal, A.K., & Putra S.R. (2015). Production by lintnerization-autoclaving and physicochemical characterization of resistant starch 3 from sago palm (Metroxylon sagu Rottb). Indonesian Journal of Chemistry, 15(3), 295–304.
Purwani, E.Y., Widaningrum, Thahir, R., & Muslich. (2006). Effect of heat moisture treatment of sago starch on its noodle quality. Indonesian Journal of Agricultural Science, 7(1), 8–14.
Rodríguez-Carpena, J.G., Morcuende, D., Andrade, M.J., Kylli, P., & Estévez, M. 2011. Avocado (Persea americana Mill.) phenolics, in vitro antioxidant and antimicrobial activities, and inhibition of lipid and protein oxidation in porcine patties. Journal of Agricultural and Food Chemistry, 59(10), 5625–5635. http://doi.org/10.1021/jf1048832.
Sajilata, M.G., Singhal, R.S., & Kulkarni, P.R. (2006). Resistant starch - a review. Comprehensive Reviews in Food Science and Food Safety, 5(1), 1–17. https://doi.org/10.1111/j.1541-4337.2006.tb00076.x.
Sandhu, K.S., Singh, N., & Lim, S.T. (2007). A comparison of native and acid thinned normal and waxy corn starches; physicochemical, thermal, morphological and pasting properties. LWT - Food Science and Technology, 40(9), 1527–1536. https://doi.org/10.1016/j.lwt.2006.12.012.
Schmiedl, D., Bäuerlein, M., Bengs, H., & Jacobasch, G. (2000). Production of heat-stable, butyrogenic resistant starch. Carbohydrate Polymers, 43(2), 183-193. https://doi.org/10.1016/S0144-8617(00)00147-8.
Singh, N., Chawla., D., & Singh, J. (2004). Influence of acetic anhydride on physicochemical, morphological and thermal properties of corn and potato starch. Food Chemistry, 86(4), 601–608.https://doi.org/10.1016/j.foodchem.2003.10.008.
Sun, Q., Zhu, X., Si, F., & Xiong, L. (2015). Effect of acid hydrolysis combined with heat moisture treatment on structure and physicochemical properties of corn starch. Journal of Food Science and Technology, 52(1), 375–382. http://doi.org/10.1007/s13197-013-0998-7.
Takizawa, F.F., Silva, G.O., Konkel, F.E., & Demiate, I.M. (2004). Characterization of tropical starches modified with potassium permanganate and lactic acid. Brazilian Archives of Biology and Technology, 47(6), 921–931. http://dx.doi.org/10.1590/S1516-89132004000600012.
Utomo, M.P. (2008). Teori Asam-Basa. Makalah Pengabdian Pada Masyarakat. Universitas Negeri Yogyakarta.
Waliszewski, K.N., Aparicio, M.A., Bello, L.A., & Monroy, J.A. (2003). Changes of banana starch by chemical and physical modification. Carbohydrate Polymer, 52(3), 237–242. https://doi.org/10.1016/S0144-8617(02)00270-9.
Wang, Y.J., Truong, V.D., & Wang, L.F. (2003). Structures and rheological properties of corn starch as affected by acid hydrolysis. Carbohydrat Polymer, 52(3), 327–333. https://doi.org/10.1016/S0144-8617(02)00323-5.
Wurzburg, O.B. (1989). Modified Starches: Properties and Uses. Boca Raton: CRC Press.
Yamani, B.V. (2010). Physico-chemical and functional characterization of tuber starches originating in South America: Oca (Oxalis tuberosa Molina), Alluco (Ullucus tuberosus Caldas) and Mashua (Tropaeolum tuberosum Ruiz e Pavón). Dissertation. São Paulo: Universidade de São Paulo.
DOI: https://doi.org/10.22146/agritech.16611
Article Metrics
Abstract views : 7326 | views : 11074Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Febby Jeanry Polnaya, Alfredo Andelson Huwae, Gilian Tetelepta
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
agriTECH has been Indexed by:
agriTECH (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.