Production of Fatty Acid Methyl Ester Surfactants using Palm Oil with Various Reaction Temperatures and Duration
Stefanie Bernike Agatha(1), Setyaningrum Ariviani(2*), Simping Yuliatun(3)
(1) Department of Food Science and Technology, Faculty of Agriculture, Universitas Sebelas Maret, Jl. Ir. Sutami No. 36 A, Kentingan, Surakarta 57126
(2) Department of Food Science and Technology, Faculty of Agriculture, Universitas Sebelas Maret, Jl. Ir. Sutami No. 36 A, Kentingan, Surakarta 57126
(3) Indonesian Sugar Plantation Research Center, Jl. Pahlawan No. 25, Pasuruan, East Java 67126
(*) Corresponding Author
Abstract
Most surfactants are made from petrochemicals, posing significant environmental concerns due to the non- biodegradable and non-renewable nature. To address this challenge, surfactants from biodegradable, non-toxic, and harmless materials are required, such as Fatty Acid Methyl Ester (FAME) derived from palm oil. Therefore, this research aimed to investigate the effect of reaction tempetarures and durations as well as the interactions on the yield of FAME surfactants. The characteristics of the highest yield of FAME surfactants were also examined, including HLB (hydrophilic-lipophilic balance) value, surface tension, CMC (critical micelles concentration), density, and pH values. The study was conducted using Completely Randomized Factorial Design with three (3) factors, namely temperature (50 and 60 °C), reaction duration (60, 90, and 120 minutes), and the interaction. The results showed that the highest yield of 82.43% was produced at an interaction reaction temperature of 60 °C and a duration of 120 minutes. The characteristics of surfactants obtained were HLB value of 5.47, surface tension of 30.49 dyne/cm, capable of reducing surface tension by 73.20% (from 72.80 to 19.52 dyne/cm), CMC, density and pH values of 1.50% (v/v), 0.8757 g/cm 3 , and 6.86, respectively. These characteristics suggested that FAME has the potential for application as a water-in-oil (w/o) emulsifier. Moreover, the results could be applied to produce biodegradable surfactants using tropical oils through easy and simple technology.
Keywords
Full Text:
PDFReferences
Akbari, S., Abdurahman, N. H., Yunus, R. M., Fayaz, F., & Alara, O. R. (2018). Biosurfactants—A New Frontier for Social and Environmental Safety: A Mini Review. Biotechnology Research and Innovation, 2(1), 81–90. https://doi.org/10.1016/j.biori.2018.09.001
Awuchi, C. G., Twinomuhwezi, H., Igwe, V. S., & Amagwula, I. O. (2020). Food Additives and Food Preservatives for Domestic and Industrial Food Applications. Journal of Animal Health, 2(1), 1–16. www.iprjb.org/journals/index.php/JAH/article/view/1067
Barišić, V., Šubarić, D., Jašić, M., & Babić, J. (2019). Function of Food Additives in Chocolate Production. Hrana u Zdravlju i Bolesti: Znanstveno-Stručni Časopis Za Nutricionizam i Dijetetiku, 8(2), 123–128. https://hrcak.srce.hr/230172
Belhaj, A. F., Elraies, K. A., Alnarabiji, M. S., Shuhli, J. A. B. M., Mahmood, S. M., & Ern, L. W. (2019). Experimental Investigation of Surfactant Partitioning in Pre-CMC and Post-CMC Regimes for Enhanced Oil Recovery Application. Energies, 12(2319), 1–15. https://doi.org/10.3390/en12122319
Berghuis, N. T., Putri, A. K. D. S., Ratri, E. P. J., Assatyas, S., Marno, S., Putri, N., & Prabowo, E. B. (2022). Sintesis dan Karakterisasi Surfaktan Lignosulfonat dari Lignin Alkali Standar dan Lignosulfonat Teraminasi dari Lignosulfonat Standar. Al-Kimiya, 9(1), 32–41. https://doi.org/10.15575/ak.v9i1.17550
BSN. (2015). SNI 7182:2015 Biodiesel. Jakarta: Badan Standardisasi Nasional.
Chanakaewsomboon, I., Tongurai, C., Photaworn, S., Kungsanant, S., & Nikhom, R. (2020). Investigation of Saponification Mechanisms in Biodiesel Production: Microscopic Visualization of The Effects of FFA, Water and The Amount of Alkaline Catalyst. Journal of Environmental Chemical Engineering, 8(103538), 1–18. https://doi.org/10.1016/j.jece.2019.103538
Chen, L. (2015). Emulsifiers As Food Texture Modifiers. In Modifying Food Texture: Novel Ingredients and Processing Techniques (Vol. 1, pp. 27–49). Elsevier Ltd. https://doi.org/10.1016/B978-1-78242-333-1.00002-4
Damayanti, S., Yuanita, V., & Kartasasmita, R. E. (2013). Optimasi Reaksi Transesterifikasi Minyak Kelapa Sawit (Elaeis guineensis Jacq.) dan Penetapan Kadar Metil Ester Asam Lemak Menggunakan Kromatografi Gas. Acta Pharmaceutica Indonesia, 38(1), 31–36. https://doi.org/10.5614/api.v38i1.5202
Eevera, T., Rajendran, K., & Saradha, S. (2009). Biodiesel Production Process Optimization and Characterization to Assess The Suitability of The Product for Varied Environmental Conditions. Renewable Energy, 34(3), 762–765. https://doi.org/10.1016/j.renene.2008.04.006
Efavi, J. K., Kanbogtah, D., Apalangya, V., Nyankson, E., Tiburu, E. K., Dodoo-Arhin, D., Onwona-Agyeman, B., & Yaya, A. (2018). The Effect of NaOH Catalyst Concentration and Extraction Time on The Yield and Properties of Citrullus vulgaris Seed Oil as A Potential Biodiesel Feed Stock. South African Journal of Chemical Engineering, 25, 98–102. https://doi.org/10.1016/j.sajce.2018.03.002
Elarbi, F. M., Janger, A. A., Abu-Sen, L. M., & Ettarhouni, Z. O. (2020). Determination of CMC and Interfacial Properties of Anionic (SDS) and Cationic (CPB) Surfactants in Aqueous Solutions. American Journal of Engineering Research (AJER), 9(8), 118–126. www.ajer.org
Freitas, S. V. D., Oliveira, M. B., Queimada, A. J., Pratas, M. J., Lima, Á. S., & Coutinho, J. A. P. (2011). Measurement and Prediction of Biodiesel Surface Tensions. Energy & Fuels, 25(10), 4811–4817. https://doi.org/10.1021/ef201217q
Ghazanfari, J., Najafi, B., Faizollahzadeh Ardabili, S., & Shamshirband, S. (2017). Limiting Factors for The Use of Palm Oil Biodiesel in A Diesel Engine in The Context of The ASTM Standard. Cogent Engineering, 4(1411221), 1–16. https://doi.org/10.1080/23311916.2017.1411221
Herawati, N., Mardwita, & Ardianysah, M. R. (2020). The Effect of Naoh Catalyst on The Manufacture Of Biodiesel From Crude Palm Oil Using Transesterification Reaction. International Journal of Scientific & Technology Research, 9(10). https://www.ijstr.org/paper-references.php?ref=IJSTR-1020-42763
Holilah, Utami, T. P., & Prasetyoko, D. (2013). Sintesis dan Karakterisasi Biodiesel dari Minyak Kemiri Sunan (Reutealis trisperma) dengan Variasi Konsentrasi Katalis NaOH. Jurnal MIPA, 36(1), 51–59. https://journal.unnes.ac.id/nju/index.php/JM/article/view/2961/2981
Hutami, R., & Ayu, D. F. (2015). Pembuatan dan Karakterisasi Metil Ester dari Minyak Goreng Kelapa Sawit Komersial. Jurnal Agroindustri Halal, 1(2), 131–138. https://doi.org/10.30997/jah.v1i2.371
Jimmy, J., Setyawan, E. Y., & Rastini, E. K. (2022). Alkali-Catalyzed Palm Oil Transesterification at Room Temperature: Effect of Stirring Time and Reaction Time. Reka Buana : Jurnal Ilmiah Teknik Sipil Dan Teknik Kimia, 7(1), 63–73. https://doi.org/10.33366/rekabuana.v7i1.3211.
Karimi, M. A., Mozaheb, M. A., Hatefi-Mehrjardi, A., Tavallali, H., Attaran, A. M., & Shamsi, R. (2015). A New Simple Method for Determining The Critical Micelle Concentration of Surfactants Using Surface Plasmon Resonance of Silver Nanoparticles. Journal of Analytical Science and Technology, 6(35), 1–8. https://doi.org/10.1186/s40543-015-0077-y
Kinyanjui, T., Artz, W. E., & Mahungu, S. (2003). Emulsifiers | Uses in Processed Foods. In Encyclopedia of Food Sciences and Nutrition (Vol. 65, Issue 1, pp. 2080–2086). Elsevier. https://doi.org/10.1016/B0-12-227055-X/00403-X
Leung, D.Y.C., & Guo, Y. (2006). Transesterification of Neat and Used Frying Oil: Optimization for Biodiesel Production. Fuel Processing Technology, 87(10), 883–890. https://doi.org/10.1016/j.fuproc.2006.06.003
Leung, Dennis Y.C., Wu, X., & Leung, M. K. H. (2010). A Review on Biodiesel Production Using Catalyzed Transesterification. Applied Energy, 87(4), 1083–1095. https://doi.org/10.1016/j.apenergy.2009.10.006
Lubes, Z. I. Z., & Zakaria, M. (2009). Analysis of Parameters for Fatty Acid Methyl Esters Production from Refined Palm Oil for Use As Biodiesel in The Single- and Two-stage Processes. Malaysian Journal of Biochemistry and Molecular Biology, 17(1), 5–9. https://eprints.um.edu.my/16778/1/IlhamandZakaria2009_MJBMB.pdf
Mandei, J. H., Edam, M., Assah, Y. F., Makalalag, A., & Silaban, D. P. (2020). Metil Ester Minyak Kelapa Murni yang Telah Diekstrak Senyawa Fenolik dengan Variasi Waktu Transesterifikasi. Jurnal Riset Teknologi Industri, 14(2), 309–319. https://doi.org/10.26578/jrti.v14i2.6557
Mcglynn, W. (2016). Food Technology Fact Sheet | The Importance of Food pH in Commercial Canning Operations. Food & Agricultural Products Center - Oklahoma State University, 118, 1–8. https://extension.okstate.edu/fact-sheets/the-importance-of-food-ph-in-commercial-canning-operations.html
Melo-Espinosa, E. A., Piloto-Rodríguez, R., Goyos-Pérez, L., Sierens, R., & Verhelst, S. (2015). Emulsification of Animal Fats and Vegetable Oils for Their Use as A Diesel Engine Fuel: An Overview. Renewable and Sustainable Energy Reviews, 47, 623–633. https://doi.org/10.1016/j.rser.2015.03.091
Mulana, F. (2011). Penggunaan Katalis NaOH dalam Proses Transesterifikasi Minyak Kemiri Menjadi Biodiesel. Jurnal Rekayasa Kimia Dan Lingkungan, 8(2), 73–78. https://jurnal.usk.ac.id/RKL/article/view/744
Nakama, Y. (2017). Surfactants. In Cosmetic Science and Technology: Theoretical Principles and Applications (pp. 231–244). Elsevier Inc. https://doi.org/10.1016/B978-0-12-802005-0.00015-X
Nawangsasi, I. R. (2017). Karakteristik Fisikokimia Emulsi Ganda W/O/W Sodium Klorida (NaCl) pada Bumbu Mi Instan. Universitas Diponegoro. http://eprints.undip.ac.id/56563/
Ng, N., & Rogers, M. A. (2018). Surfactants. In Encyclopedia of Food Chemistry (pp. 276–282). Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.21598-9
Partridge, D., Lloyd, K. A., Rhodes, J. M., Walker, A. W., Johnstone, A. M., & Campbell, B. J. (2019). Food Additives: Assessing The Impact of Exposure to Permitted Emulsifiers on Bowel and Metabolic Health – Introducing The FADiets Study. Nutrition Bulletin, 44(4), 329–349. https://doi.org/10.1111/nbu.12408
Pawignya, H., Kusworo, T. D., & Pramudono, B. (2018). Synthesis of Surfactant Tert-Butyl Glycosides from Glucose and Tert-Butanol. Reaktor, 18(04), 202–208. https://doi.org/10.14710/reaktor.18.04.202-208
Peltonen, L., Hirvonen, J., & Yliruusi, J. (2001). The Behavior of Sorbitan Surfactants at The Water-oil Interface: Straight-chained Hydrocarbons from Pentane to Dodecane as An Oil Phase. Journal of Colloid and Interface Science, 240(1), 272–276. https://doi.org/10.1006/jcis.2001.7612
Perinelli, D. R., Cespi, M., Lorusso, N., Palmieri, G. F., Bonacucina, G., & Blasi, P. (2020). Surfactant Self-Assembling and Critical Micelle Concentration: One Approach Fits All? Langmuir, 36(21), 5745–5753. https://doi.org/10.1021/acs.langmuir.0c00420
Phankosol, S., Sudaprasert, K., Lilitchan, S., Aryusuk, K., & Krisnangkura, K. (2014). Estimation of Surface Tension of Fatty Acid Methyl Ester and Biodiesel at Different Temperatures. Fuel, 126, 162–168. https://doi.org/10.1016/j.fuel.2014.02.054
Prihanto, A., Pramudono, B., & Santosa, H. (2013). Peningkatan Yield Biodisel dari Minyak Biji Nyamplung Melalui Transesterifikasi Dua Tahap. Momentum, 9(2), 46–53. https://www.publikasiilmiah.unwahas.ac.id/index.php/MOMENTUM/article/viewFile/927/1038
Rabiu, A., Elias, S., & Oyekola, O. (2018). Oleochemicals from Palm Oil for The Petroleum Industry. In Palm Oil (pp. 91–116). IntechOpen. https://doi.org/10.5772/intechopen.76771
Rahim, A. M. E. N., & Prihatiningtiyas, I. (2017). Pengaruh Katalis Asam dan Basa Terhadap Biodisel yang Dihasilkan pada Proses Trans(esterifikasi) In Situ Biji Karet. Prosiding Seminar Nasional ReTII Ke-10 2015, 718–722. https://journal.itny.ac.id/index.php/ReTII/article/view/306
Reningtyas, R., & Mahreni, M. (2015). Biosurfactant. Eksergi, 12(2), 12–22. https://doi.org/10.31315/e.v12i2.1354
Sampepana, E., Yustini, P. E., Rinaldi, A., & Amiroh, A. (2015). Perbandingan Karakteristik Surfaktan Metil Ester Sulfonat dan Sodium Lauril Sulfonat Sebagai Bahan Emulsifier. Jurnal Riset Teknologi Industri, 9(2), 167–176. https://doi.org/10.26578/jrti.v9i2.1715
Sarubbo, L. A., Silva, M. da G. C., Durval, I. J. B., Bezerra, K. G. O., Ribeiro, B. G., Silva, I. A., Twigg, M. S., & Banat, I. M. (2022). Biosurfactants: Production, Properties, Applications, Trends, and General Perspectives. Biochemical Engineering Journal, 181(108377), 1–19. https://doi.org/10.1016/j.bej.2022.108377
Shi, Y., Yan, F., Jia, Q., & Wang, Q. (2019). Norm Descriptors for Predicting The Hydrophile-Lipophile Balance (HLB) and Critical Micelle Concentration (CMC) of Anionic Surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 583(123967), 1–7. https://doi.org/10.1016/j.colsurfa.2019.123967
Sipahutar, R., & Tobing, H. L. (2013). Pengaruh Variasi Suhu dan Waktu Konversi Biodiesel dari Minyak Jarak Terhadap Kuantitas Biodiesel yang Dihasilkan. Jurnal Rekayasa Mesin Universitas Sriwijaya, 13(1), 15–20. https://ejournal.unsri.ac.id/index.php/jrm/article/view/80/pdf_1
Sutiko, S., Sampurno, A., Cahyanti, A. N., & Larasari, D. (2020). Pengaruh Lama Pemanasan Lumpia Basah Kemas Non Vakum Terhadap Tpc, Ph, Aw dan Sensori Selama Penyimpanan Suhu Ruang. Jurnal Teknologi Pangan Dan Hasil Pertanian, 15(1), 28–33. https://doi.org/10.26623/jtphp.v15i1.2324
Uzwatania, F., Hambali, E., & Suryani, A. (2017). Sintesis Surfaktan Alkil Poliglikosida (APG) Berbasis Dodekanol dan Heksadekanol dengan Reaktan Glukosa Cair 75%. Jurnal Teknologi Industri Pertanian, 27(1), 9–16. https://doi.org/10.24961/j.tek.ind.pert.2017.27.1.9
Wardana, D., Ramadhan, A., Fitri Amne, D. P., & Eddiyanto, E. (2019). Utilization of Glycerol from Used Oil as An Ester Glycerol Surfactant. Indonesian Journal of Chemical Science and Technology (IJCST), 2(2), 111–120. https://doi.org/10.24114/ijcst.v2i2.13999
Widyasanti, A., Nurjanah, S., & Sinatria, T. M. G. (2017). Pengaruh Suhu dalam Proses Transesterifikasi pada Pembuatan Biodiesel Kemiri Sunan (Reautealis trisperma). Universitas Padjadjaran: Jurnal Material Dan Energi Indonesia, 07(01), 9–18. http://jurnal.unpad.ac.id/jmei/article/view/12051/5814
Wu, J., Yan, F., Jia, Q., & Wang, Q. (2021). QSPR for Predicting The Hydrophile-Lipophile Balance (HLB) of Non-ionic Surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 611(125812), 1–6. https://doi.org/10.1016/j.colsurfa.2020.125812
DOI: https://doi.org/10.22146/agritech.85421
Article Metrics
Abstract views : 1714 | views : 698Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Stefanie Bernike Agatha, Setyaningrum Ariviani, Simping Yuliatun
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
agriTECH has been Indexed by:
agriTECH (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.