Ethanolysis Pretreatment of Crude Palm Oil in High Shear Reactor

https://doi.org/10.22146/agritech.81499

Hidrotunnisa Hidrotunnisa(1), Rini Yanti(2*), Chusnul Hidayat(3)

(1) Department of Food Technology, Faculty of Agriculture, Universitas Jenderal Soedirman, Dr. Soeparno Street, No. 63, Grendeng, North Purwokerto 53124, Indonesia
(2) Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Flora Street, No. 1, Bulaksumur, Yogyakarta 55281, Indonesia
(3) Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Flora Street, No. 1, Bulaksumur, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


Crude palm oil (CPO) is characterized by high carotenoid content, dissolving in the oil system and causing a difficult extraction process. To overcome this problem, transesterification of CPO with ethanol was performed to improve the carotenoid extractability using sodium hydroxide as a catalyst. Therefore, this study aimed to investigate the effect of ethanolysis parameters on the carotenoid and fatty acid ethyl ester (FAEE) content of CPO. FAEE content was quantified by thin-layer chromatography and total carotenoid content (TCC) was determined through a UV-Vis spectrophotometer. Reaction time (15-150 min), catalyst concentration (0.65-3.25%), reaction temperature (3070 ℃), and stirring speed (500-2000 rpm) were determined by one factor at a time (OFAT) design. The results showed that ethanolysis time and temperature did not affect TCC along the study range, while ethanolysis time of 45 minutes and temperature of 70 ℃ increased FAEE content. Additionally, catalyst concentration of 1.95% and stirring speed at 2000 rpm increased TCC and FAEE. The best ethanolysis parameters were obtained at 45 minutes, the temperature of 50 ℃, catalyst concentration of 1.3%, and stirring speed of 2000 rpm, yielding FAEE 1358±16 ppm and TCC 99.9±0.2%. This showed that ethanolysis produced high FAEE content and improved carotenoids in the oil system.


Keywords


Carotenoid; crude palm oil; ethanolysis; fatty acid ethyl ester

Full Text:

PDF


References

Abd Rashid, S. N. A., Ab. Malik, S., Embi, K., Mohd Ropi, N. A., Yaakob, H., Cheng, K. K., Sarmidi, M. R., & Leong, H. Y. (2019). Carotenoids and antioxidant activity in virgin palm oil (VPO) produced from palm mesocarp with low heat aqueous-enzyme extraction techniques. Materials Today: Proceedings, 42, 148–152. https://doi.org/10.1016/j.matpr.2020.10.616.

Abdullah, B. M., Yusop, R. M., Salimon, J., Yousif, E., & Salih, N. (2013). Physical and Chemical Properties Analysis of Jatropha curcas Seed Oil for Industrial Applications. International Journal of Chemical, Molecular, Nuclear, Materials, and Metallurgical Engineering, 7(12), 893–896.

Abo El-Enin, S. A., Attia, N. K., El-Ibiari, N. N., El-Diwani, G. I., & El-Khatib, K. M. (2013). In-situ transesterification of rapeseed and cost indicators for biodiesel production. Renewable and Sustainable Energy Reviews, 18(February), 471–477. https://doi.org/10.1016/j.rser.2012.10.033.

Anguebes-Franseschi, F., Córdova-Quiroz, A., Cerón-Bretón, J., Aguilar-Ucan, C., Castillo-Martínez, G., Cerón-Bretón, R., Ruíz-Marín, A., & Montalvo-Romero, C. (2016). Optimization of Biodiesel Production from African Crude Palm Oil (Elaeis guineensis Jacq) with High Concentration of Free Fatty Acids by a Two-Step Transesterification Process. Open Journal of Ecology, 06(01), 13–21. https://doi.org/10.4236/oje.2016.61002.

Asemi, Z., Alizadeh, S. A., Ahmad, K., Goli, M., & Esmaillzadeh, A. (2016). Effects of beta-carotene fortified synbiotic food on metabolic control of patients with type 2 diabetes mellitus: A double-blind randomized cross-over controlled clinical trial. Clinical Nutrition, 35(4), 819–825. https://doi.org/10.1016/j.clnu.2015.07.009.

Atadashi, I. M., Aroua, M. K., Abdul Aziz, A. R., & Sulaiman, N. M. N. (2013). The effects of catalysts in biodiesel production: A review. Journal of Industrial and Engineering Chemistry, 19(1), 14–26. https://doi.org/10.1016/j.jiec.2012.07.009.

Bolonio, D., García-Martínez, M. J., Ortega, M. F., Lapuerta, M., Rodríguez-Fernández, J., & Canoira, L. (2019). Fatty acid ethyl esters (FAEEs) obtained from grapeseed oil: A fully renewable biofuel. Renewable Energy, 132, 278–283. https://doi.org/10.1016/j.renene.2018.08.010.

BSN. (2006). SNI 04-7182-2006: Biodiesel.

Cardenas-Toro, F. P., Forster-Carneiro, T., Rostagno, M. A., Petenate, A. J., Maugeri Filho, F., & Meireles, M. A. A. (2014). Integrated supercritical fluid extraction and subcritical water hydrolysis for the recovery of bioactive compounds from pressed palm fiber. Journal of Supercritical Fluids, 93, 42–48. https://doi.org/10.1016/j.supflu.2014.02.009

Chattopadhyay, S., Das, S., & Sen, R. (2011). Rapid and precise estimation of biodiesel by high performance thin layer chromatography. Applied Energy, 88(12), 5188–5192. https://doi.org/10.1016/j.apenergy.2011.07.027

Chiu, M. C., de Morais Coutinho, C., & Gonçalves, L. A. G. (2009). Carotenoids concentration of palm oil using membrane technology. Desalination, 245(1–3), 783–786. https://doi.org/10.1016/j.desal.2009.03.002.

Dal Prá, V., Lunelli, F. C., Vendruscolo, R. G., Martins, R., Wagner, R., Lazzaretti, A. P., Freire, D. M. G., Alexandri, M., Koutinas, A., Mazutti, M. A., & da Rosa, M. B. (2017). Ultrasound-assisted extraction of bioactive compounds from palm pressed fiber with high antioxidant and photoprotective activities. Ultrasonics Sonochemistry, 36, 362–366. https://doi.org/10.1016/j.ultsonch.2016.12.021.

Encinar, J. M., González, J. F., & Rodríguez-Reinares, A. (2007). Ethanolysis of used frying oil. Biodiesel preparation and characterization. Fuel Processing Technology, 88(5), 513–522. https://doi.org/10.1016/j.fuproc.2007.01.002

Enyoh, C. E., Ihionu, E. A., Verla, A. W., & Ebosie, P. N. (2017). Physicochemical Parameter of Palm Oil and Soil from Ihube Community, Okigwe, Imo State Nigeria. International Letters of Natural Sciences, 62, 35–43. https://doi.org/10.18052/www.scipress.com/ilns.62.35

Gul, K., Tak, A., Singh, A. K., Singh, P., Yousuf, B., & Wani, A. A. (2015). Chemistry, encapsulation, and health benefits of β-carotene - A review. Cogent Food and Agriculture, 1(1). https://doi.org/10.1080/23311932.2015.1018696.

Gurak, P. D., Mercadante, A. Z., González-Miret, M. L., Heredia, F. J., & Meléndez-Martínez, A. J. (2014). Changes in antioxidant capacity and colour associated with the formation of β-carotene epoxides and oxidative cleavage derivatives. Food Chemistry, 147, 160–169. https://doi.org/10.1016/j.foodchem.2013.09.106.

Hoe, B. C., Chan, E. S., Nagasundara Ramanan, R., & Ooi, C. W. (2020). Recent development and challenges in extraction of phytonutrients from palm oil. Comprehensive Reviews in Food Science and Food Safety, 19(6), 4031–4061. https://doi.org/10.1111/1541-4337.12648.

Hori, K., Hashimoto, Y., Itani, A., Okada, T., & Tsumura, K. (2021). Effects of neutralization combined with steam distillation on the formation of monochloropropanediol esters and glycidyl esters in palm oil under laboratory-scale conditions. Lwt, 139(November 2020), 110783. https://doi.org/10.1016/j.lwt.2020.110783

Iftikhar, Tan, H., & Zhao, Y. (2018). Enriching β-carotene from fatty acid esters mixture of palm oil using supercritical CO2 in the silica-packed column. Journal of CO2 Utilization, 26(February), 93–97. https://doi.org/10.1016/j.jcou.2018.04.028.

Indonesian Palm Oil Association. (2020). Refleksi Industri Sawit 2020 & Prospek 2021 - Gabungan Pengusaha Kelapa Sawit Indonesia (GAPKI). https://gapki.id/news/18768/refleksi-industri-sawit-2020-prospek-2021.

Japir, A. A. W., Salimon, J., Derawi, D., Bahadi, M., Al-Shuja’A, S., & Yusop, M. R. (2017). Physicochemical characteristics of high free fatty acid crude palm oil. OCL - Oilseeds and Fats, Crops and Lipids, 24(5). https://doi.org/10.1051/ocl/2017033.

Kabbashi, N. A. (2015). Effect of Process Parameters on Yield and Conversion of Jatropha Biodiesel in a Batch Reactor. Journal of Fundamentals of Renewable Energy and Applications, 05(02). https://doi.org/10.4172/2090-4541.1000155.

Kaieda, M., Samukawa, T., Matsumoto, T., Ban, K., Kondo, A., Shimada, Y., Noda, H., Nomoto, F., Ohtsuka, K., Izumoto, E., & Fukuda, H. (1999). Biodiesel fuel production from plant oil catalyzed by Rhizopus oryzae lipase in a water-containing system without an organic solvent. Journal of Bioscience and Bioengineering, 88(6), 627–631. https://doi.org/10.1016/S1389-1723(00)87091-7.

Kaur, K., Shivhare, U. S., Basu, S., & Raghavan, G. S. V. (2012). Kinetics of Extraction of <i>β</i>-Carotene from Tray Dried Carrots Using Supercritical Fluid Extraction Technique. Food and Nutrition Sciences, 03(05), 591–595. https://doi.org/10.4236/fns.2012.35081.

Knockaert, G., Lemmens, L., Van Buggenhout, S., Hendrickx, M., & Van Loey, A. (2012). Changes in β-carotene bioaccessibility and concentration during processing of carrot puree. Food Chemistry, 133(1), 60–67. https://doi.org/10.1016/j.foodchem.2011.12.066.

Knothe, G. (2006). Analyzing biodiesel: Standards and other methods. JAOCS, Journal of the American Oil Chemists’ Society, 83(10), 823–833. https://doi.org/10.1007/s11746-006-5033-y.

Kumar, P. K. P., & Krishna, A. G. G. (2014). Physico-chemical characteristics and nutraceutical distribution of crude palm oil and its fractions. Grasas y Aceites, 65(2), 1–12.

Kumar, R. S., & Purayil, S. T. P. (2019). Optimization of ethyl ester production from Arachis hypogaea oil. Energy Reports, 5, 658–665. https://doi.org/10.1016/j.egyr.2019.06.001.

Li, Z. H., Lin, P. H., Wu, J. C. S., Huang, Y. T., Lin, K. S., & Wu, K. C. W. (2013). A stirring packed-bed reactor to enhance the esterification-transesterification in biodiesel production by lowering mass-transfer resistance. Chemical Engineering Journal, 234, 9–15. https://doi.org/10.1016/j.cej.2013.08.053

Maurer, M. M., Mein, J. R., Chaudhuri, S. K., & Constant, H. L. (2014). An improved UHPLC-UV method for separation and quantification of carotenoids in vegetable crops. Food Chemistry, 165, 475–482. https://doi.org/10.1016/j.foodchem.2014.05.038.

Mba, O. I., Dumont, M. J., & Ngadi, M. (2017). Thermostability and degradation kinetics of tocochromanols and carotenoids in palm oil, canola oil, and their blends during deep-fat frying. LWT - Food Science and Technology, 82, 131–138. https://doi.org/10.1016/j.lwt.2017.04.027

Meléndez-Martínez, A. J., Britton, G., Vicario, I. M., & Heredia, F. J. (2007). Relationship between the colour and the chemical structure of carotenoid pigments. Food Chemistry, 101(3), 1145–1150. https://doi.org/10.1016/j.foodchem.2006.03.015.

Meyers, K. J., Mares, J. A., Igo, R. P., Truitt, B., Liu, Z., Millen, A. E., Klein, M., Johnson, E. J., Engelman, C. D., Karki, C. K., Blodi, B., Gehrs, K., Tinker, L., Wallace, R., Robinson, J., LeBlanc, E. S., Sarto, G., Bernstein, P. S., SanGiovanni, J. P., & Iyengar, S. K. (2013). Genetic evidence for role of carotenoids in age-related macular degeneration in the carotenoids in age-related eye disease study (CAREDS). Investigative Ophthalmology and Visual Science, 55(1), 587–599. https://doi.org/10.1167/iovs.13-13216.

Mokrzycki, W. S., & Tatol, M. (2012). Colour difference ∆E - A survey.pdf. Machine Graphic & Vision.

Nabu, E. B. P., Sulaswatty, A., & Kartohardjono, S. (2021). Palm carotene production technologies – A membrane perspective. IOP Conference Series: Materials Science and Engineering, 1053(1), 012136. https://doi.org/10.1088/1757-899x/1053/1/012136.

Nekkaa, A., Benaissa, A., Lalaouna, A. E. D., Mutelet, F., & Canabady-Rochelle, L. (2021). Optimization of the extraction process of bioactive compounds from Rhamnus alaternus leaves using Box-Behnken experimental design. Journal of Applied Research on Medicinal and Aromatic Plants, 25(September), 100345. https://doi.org/10.1016/j.jarmap.2021.100345

Noipin, K., & Kumar, S. (2015). Optimization of ethyl ester production assisted by ultrasonic irradiation. Ultrasonics Sonochemistry, 22, 548–558. https://doi.org/10.1016/j.ultsonch.2014.07.019

O. Egbuna, S., C. Onwubiko, D., & O. Asadu, C. (2019). Comparative Studies and Optimization of the Process Factors for the Extraction of Beta-carotene from Palm Oil and Soybean Oil by Solvent Extraction. Journal of Engineering Research and Reports, 8(2), 1–16. https://doi.org/10.9734/jerr/2019/v8i216984.

Qu, T., Niu, S., Zhang, X., Han, K., & Lu, C. (2021). Preparation of calcium modified Zn-Ce/Al2O3 heterogeneous catalyst for biodiesel production through transesterification of palm oil with methanol optimized by response surface methodology. Fuel, 284(August 2020), 118986. https://doi.org/10.1016/j.fuel.2020.118986

Rakkan, T., Suwanno, S., Paichid, N., Yunu, T., Klomklao, S., & Sangkharak, K. (2017). Optimized synthesis method for transesterification of residual oil from palm oil mill effluent and lipase from Pacific white shrimp (Litopenaeus vannamei) hepatopancreas to environmentally friendly biodiesel. Fuel, 209(July), 309–314. https://doi.org/10.1016/j.fuel.2017.07.115

Razi, F., Azwar, A., Sofyana, S., Erfiza, N. M., & Luxyana, M. (2022). Preparation and characterization of nanofiltration ( NF ) polyethersulfone and its preliminary studies on beta-carotene concentration from crude palm oil Preparation and characterization of nanofiltration ( NF ) polyethersulfone and its preliminary study. IOP Conf. Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/1116/1/012064.

Ribeiro, B. D., Coelho, M. A. Z., & Barreto, D. W. (2012). Production of concentrated natural beta-carotene from buriti (Mauritia vinifera) oil by enzymatic hydrolysis. Food and Bioproducts Processing, 90(2), 141–147. https://doi.org/10.1016/j.fbp.2011.02.003.

Ribeiro, J. A. A., Almeida, E. S., Neto, B. A. D., Abdelnur, P. V., & Monteiro, S. (2018). Identification of carotenoid isomers in crude and bleached palm oils by mass spectrometry. LWT - Food Science and Technology, 89(November 2017), 631–637. https://doi.org/10.1016/j.lwt.2017.11.039

Sampaio, K. A., Ayala, J. V., Silva, S. M., Ceriani, R., Verhé, R., & Meirelles, A. J. A. (2013). Thermal degradation kinetics of carotenoids in palm oil. JAOCS, Journal of the American Oil Chemists’ Society, 90(2), 191–198. https://doi.org/10.1007/s11746-012-2156-1

Shahla, S., Ngoh, G. C., & Yusoff, R. (2012). The evaluation of various kinetic models for base-catalyzed ethanolysis of palm oil. Bioresource Technology, 104, 1–5. https://doi.org/10.1016/j.biortech.2011.11.010.

Surya Abadi Ginting, M., Tazli Azizan, M., & Yusup, S. (2012). Alkaline in situ ethanolysis of Jatropha curcas. Fuel, 93, 82–85. https://doi.org/10.1016/j.fuel.2011.08.062.

Szydłowska-Czerniak, A., Trokowski, K., Karlovits, G., & Szłyk, E. (2011). Effect of refining processes on antioxidant capacity, total contents of phenolics and carotenoids in palm oils. Food Chemistry, 129(3), 1187–1192. https://doi.org/10.1016/j.foodchem.2011.05.101

Thoai, D. N., Le Hang, P. T., & Lan, D. T. (2019). Pre-treatment of waste cooking oil with high free fatty acids content for biodiesel production: An optimization study via response surface methodology. Vietnam Journal of Chemistry, 57(5), 568–573. https://doi.org/10.1002/vjch.201900072.

Veličković, A. V., Stamenković, O. S., Todorović, Z. B., & Veljković, V. B. (2013). Application of the full factorial design to optimization of base-catalyzed sunflower oil ethanolysis. Fuel, 104, 433–442. https://doi.org/10.1016/j.fuel.2012.08.015.

Wangi, I., Supriyanto, S., Sulistyo, H., Hidayat, C., & Mada, U. G. (2023). High Shear Reactor for Glycerolysis – Interesterification Palm Stearin-Olein Blend : Reaction Kinetics and Physical Properties. 617224.

Zhang, J., Xu, S., & Li, W. (2012). High shear mixers: A review of typical applications and studies on power draw, flow pattern, energy dissipation, and transfer properties. Chemical Engineering and Processing: Process Intensification, 5758, 25–41. https://doi.org/10.1016/j.cep.2012.04.004.



DOI: https://doi.org/10.22146/agritech.81499

Article Metrics

Abstract views : 10 | views : 1

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Hidrotunnisa Hidrotunnisa, Rini Yanti, Chusnul Hidayat

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

agriTECH has been Indexed by:


agriTECH (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.


website statisticsView My Stats