Identification and Composition of Volatile Compounds in Liquid Smoke Derived from Betara Variety of Areca catechu Husk

https://doi.org/10.22146/agritech.63605

Kamalia Muliyanti(1), Chusnul Hidayat(2), Supriyadi Supriyadi(3*)

(1) Assessment Institute for Agricultural Technologi (AIAT) Jambi, Ministry of Agricultural, Jl. Samarinda, Paal Lima Village, Kota Baru District, Jambi
(2) Department of Food and Agricultural Products Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No. 1. Bulaksumur, Yogyakarta 55281
(3) Department of Food and Agricultural Products Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No. 1. Bulaksumur, Yogyakarta 55281
(*) Corresponding Author

Abstract


The seeds of Areca nut plants hold significant economic value, with a remarkable total production of 65,295.89 tons. However, the husk, constituting 50% to 75% of the fruit, are persistently discarded. This study aims to explore the conversion of Areca nut waste into liquid smoke with specific physical properties and chemical composition. It uses GC-MS to identify volatile chemicals in liquid smoke and carries out a distillation process using a glass column containing natural zeolite for purification. Furthermore, the pyrolysis method is employed at a varying temperature of 150 °C, 250 °C, 350 °C, and 450 °C for 3 hours to process the waste into liquid smoke. The study determines the chemical composition of total acid, phenol, and carbonyl, which range from 1.34% to 3.09%, 0.37% to 0.42%, and 6.84% to 7.46%, respectively. The physical properties of crude liquid smoke in terms of yield range from 16.93% to 31.49%, while the color brightness varies from 25.02 to 57.46. The result shows that liquid smoke comprises 13 acidic, 20 carbonyl, and 6 phenolic compounds, contributing to the aroma. In addition, temperature of the pyrolysis process affects the formation of liquid smoke and the corresponding compounds contained in Areca husk.

Keywords


Betara variety of Areca Catechu husk; liquid smoke; pyrolysis; temperature

Full Text:

PDF


References

Andy, Malaka, R., Purwanti, S., Ali, H. M., & Aulyani, T. (2021). Liquid smoke characteristic from coconut shell and rice husk. The 3rd International Conference of Animal Science and Technology IOP Conf. Series: Earth and Environmental Science IOP Publishing. https://doi.org/10.1088/1755-1315/788/1/012078

AOAC. (1990). Official Methods of Analysis (Vol. 1). Washington D. C.

Badin, Y. R., Anggraini, S. P. A., & Yuniningsih, S. (2017). Pengolahan sabut kelapa menjadi asap cair dengan menggunakan proses pirolisi. EUREKA : Jurnal Penelitian Teknik Sipil dan Teknik Kimia 1, 2.

Budaraga, I. K., Arnim, Marlida, Y., & Bulanin, U. (2016). Analysis of liquid smoke chemical components with GC MS from different raw materials variation production and pyrolysis temperaturelevel. International Journal of ChemTech Research, 9(6), 694–708.

Darmadji, P. (1996). Aktivitas antibakteri asap cair yang diproduksi dari bermacam-macam limbah pertanian. Agritech, 16(4), 19–22. https://doi.org/10.22146/agritech.19317

Darmadji, P. (2002). Optimasi Pemurnian asap cair dengan metoda redistilasi. Jurnal Teknologi dan Industri Pangan, 13(3), 267–271.

Darmadji, P., & Triyudiana, H. (2006). Proses Pemurnian asap cair dan simulasi akumulasi kadar benzopyrene pada proses perendaman ikan. Majalah Ilmu dan Teknologi Pertanian, 26(2), 94–103.

Das, N., & Singh, S. (2015). The potential of arecanut husk ash as supplementary cementitious material. Concret Research Letters, 6(3), 126–135.

Datta, R. (1981). Acidogenic fermentation of lignocellulose–acid yield and conversion of components. Biotechnology and Bioengineering, 23(9), 2167–2170. https://doi.org/10.1002/bit.260230921

Demirbas, A. (2005). Pyrolysis of ground beech wood in irregular heating rate conditions. Journal of Analytical and Applied Pyrolysis, 73(1), 39–43. https://doi.org/10.1016/j.jaap.2004.04.002

Fachraniah, F., Fona, Z., & Rahmi, Z. (2009). Peningkatan kualitas asap cair dengan distilasi. Jurnal Sains dan Teknologi Reaksi, 7(1), 1–11. https://doi.org/10.30811/jstr.v7i1.133

Fatimah, F. (2011). Komposisi dan aktivitas antibakteri asap cair sabut kelapa yang dibuat dengan teknik pembakaran non pirolisis. Agritech, 31(4), 305–311. https://doi.org/10.22146/agritech.9638

Fauzan, & Ikhwanus, M. (2017). Pemurnian asap cair tempurung kelapa melalui distilasi dan filtrasi menggunakan zeolit dan arang aktif. Prosiding Semnastek, 1–5. https://jurnal.umj.ac.id/index.php/semnastek/article/view/1976

Gokul, P. V., Singh, P., Singh, V. P., & Sawarkar, A. N. (2019). Thermal behavior and kinetics of pyrolysis of areca nut husk. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 41(23), 2906–2916. https://doi.org/10.1080/15567036.2019.1582733

Handojo, L., Cherilisa, & Indarto, A. (2018). Cocoa bean skin waste as potential raw material for liquid smoke production. Environmental Technology (United Kingdom), 1–23. https://doi.org/10.1080/09593330.2018.1520306

Henrickson, C. (2005). Chemistry. Canada Wiley Publishing.Inc.

Iskandar, T., & Rofiatin, U. (2017). Karakteristik Biochar berdasarkan jenis biomassa dan parameter proses pyrolisis. Jurnal Teknik Kimia, 12(1), 28–34. https://doi.org/10.33005/tekkim.v12i1.843

Jaya, I. K., Darmadji, P., & Suhardi. (1997). Penurunan Kandungan benzo(a)pyrene asap cair dengan zeolit dalam upaya meningkatkan keamanan pangan. Prosiding Seminar Teknologi Pangan, 11–18.

Johnson, E. B. G., & Arshad, S. E. (2014). Hydrothermally synthesized zeolites based on kaolinite : A review. Applied Clay Science, 9798, 215–221. https://doi.org/10.1016/j.clay.2014.06.005

Kadir, S. (2011). Teknologi Pemisahan Senyawa Aroma Keras Menyengat Pada Asap Cair Tempurung Kelapa dengan metode Redistilasi dan Adsorpsi. Gadjah Mada University.

Kadir, S., Darmadji, P., Hidayat, C., & Supriyadi. (2015). Sifat Sensoris asap cair tempurung kelapa hasil adsorpsi pada zeolit. J. Agroland, 22(1), 1–8.

Lappin, G. R., & Clark, L. C. (1951). Colorimetric Method for determination of traces of carbonyl compounds. Analytical Chemistry, 23(3), 541–542. https://doi.org/10.1021/ac60051a050

Lombok, J. Z., Setiaji, B., Trisunaryati, W., & Wijaya, K. (2014). Effect of pyrolisis temperature and distillation on character of coconut shell liquid smoke. Asian Jurnal of Science and Technology, 5(6), 320–325. http://www.journalajst.com/sites/default/files/1576.pdf

Maga, J. A. (1987). The flavor chemistry of wood smoke. Food Reviews International, 3(1–2), 139–183. https://doi.org/10.1080/87559128709540810

Ministry of Agriculture. (2019). Pusat Data dan Sistem Informasi. https://aplikasi2.pertanian.go.id/bdsp/id

Nendissa, D. M. (2005). Daya hambat asap cair tempurung kelapa yang sudah dimurnikan dengan cara redestilasi dan adsorbsi dalam zeolit aktif terhadap bakteri halofilik pada ikan tatihu (Thunnus sp) Asap. Gadjah Mada University.

Oramahi, H. A., & Diba, F. (2013). Maximizing the production of liquid smoke from bark of durio by studying its potential compounds. Procedia Environmental Sciences, 17, 60–69. https://doi.org/10.1016/j.proenv.2013.02.012

Ramachandra, T. V., Kamakshi, G., & Shruthi, B. V. (2004). Bioresource status in Karnataka. Renewable and Sustainable Energy Reviews, 8(1), 1–47. https://doi.org/10.1016/j.rser.2003.09.001

Rinaldi, A., Alimuddin, & Panggabean, A. S. (2015). Pemurnian Asap cair dari kulit durian dengan menggunakan arang aktif. Molekul, 10(2), 112–120.

Sarwendah, M., Feriadi, Wahyuni, T., & Arisanti, T. N. (2019). Pemanfaatan Limbah komoditas perkebunan untuk pembuatan asap cair. Jurrnal Littri, 25(1), 22–30. https://doi.org/http://dx.doi.org/10.21082/littri. v25n1.2019.

Senter, S. D., Robertson, A., & Meredith, F. I. (1989). Phenolic compounds of the mesocarp of cresthaven peaches during storage and ripening. Journal of Food Science, 54, 1259–1268. https://doi.org/https://doi.org/10.1111/j.1365-2621.1989.tb05968.x

Silia, F., & Maulina, S. (2017). Pengaruh Suhu, waktu, dan kadar air pada pirolisis pelepah kelapa sawit. Jurnal Teknik Kimia, 6(2), 14–18.

Suryani, R., Rizal, W. A., Pratiwi, D., & Prasetyo, D. J. (2020). Karakteristik dan aktifitas antibakteri asap cair dari biomassa kayu putih (Melaleuca leucadendra) dan kayu jati (Tectona grandis). Jurnal Teknologi Pertanian, 21(2), 106–117.

Tóth, L., & Potthast, K. (1984). Chemical aspects of the smoking of meat and meat products. Advances in Food Research, 29(C), 87–158. https://doi.org/10.1016/S0065-2628(08)60056-7

Wijaya, M., Noor, E., Irawadi, T. T., & Pari, G. (2008). Karakterisasi Komponen kimia asap cair dan pemanfaatannya sebagai biopestisida. Bionature, 9, 34–40.

Yusriah, L., Sapuan, S. M., Zainudin, E. S., & Mariatti, M. (2012). Exploring the potential of betel nut husk fiber as reinforcement in polymer composites : effect of fiber maturity. Procedia Chemistry, 4, 87–94. https://doi.org/10.1016/j.proche.2012.06.013



DOI: https://doi.org/10.22146/agritech.63605

Article Metrics

Abstract views : 1393 | views : 1130

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Supriyadi Supriyadi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

agriTECH has been Indexed by:


agriTECH (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.


website statisticsView My Stats