Effect of Rotten Butter Shock Load on Anaerobic Digestion of Chicken Manure

https://doi.org/10.22146/agritech.56792

Gaweł Sołowski(1), Izabela Konkol(2), Marwa Shalaby(3*)

(1) Institute of Fluid-Flow Machinery of Polish Academy of Sciences, Gdańsk
(2) Institute of Fluid-Flow Machinery of Polish Academy of Sciences, Gdańsk
(3) National Research Centre-Chemical Engineering & Pilot Plant Department- Engineering Division
(*) Corresponding Author

Abstract


Anaerobic digestion is a popular method for improving fertilizing properties, but there is no report on the effect of shock load with butter on anaerobic digestion of chicken manure. Therefore, this study aimed to investigate the anaerobic digestion of chicken manure with butter addition. The volatile suspended solid (VSS) was set at 20g VSS/L with different butter additions from 0 to 60 g VSS/L and different oxygen flow rate (OFR) from 0 to 2.5 mL/h. The results showed that ammonia ranged from 0.072 g/L to 0.082 g/L, while the volatile acids ranged from 425 mg/L to 325 mg/L. The volatile organic acid was significantly influenced by a change in OFR compared to ammonia, while a correlation between hydrogen and hydrogen sulfide was observed. The results showed that the highest hydrogen and methane production was obtained at butter addition of 30 g VSS/L with OFR 1.4 mL/h with volumes of 78 mL and 25 L respectively. In addition, hydrogen sulfide emissions induced rapid growth with increase in butter concentration.


Keywords


Anaerobic digestion; butter; chicken manure; dark fermentation

Full Text:

PDF


References

Abouelenien, F., Nakashimada, Y., & Nishio, N. (2009). Dry mesophilic fermentation of chicken manure for production of methane by repeated batch culture. JBIOSC, 107(3), 293–295. https://doi.org/10.1016/j.jbiosc.2008.10.009

Abu-Irmaileh, B., & Abu-Rayyan, A. (2004). In-row Preplant Manure Composting Reduces Weed Populations. HortScience, 39(6), 1456–1460.

Alfa, I. M., Dahunsi, S. O., Iorhemen, O. T., Okafor, C. C., & Ajayi, S. A. (2014). Comparative evaluation of biogas production from Poultry droppings , Cow dung and Lemon grass. Bioresource Technology, 157, 270–277. https://doi.org/10.1016/j.biortech.2014.01.108

Alsouleman, K., Linke, B., Klang, J., Klocke, M., Krakat, N., & Theurl, S. (2016). Reorganisation of a mesophilic biogas microbiome as response to a stepwise increase of ammonium nitrogen ... PhD project View project. Bioresource Technology, 208(March), 200–204. https://doi.org/10.1016/j.biortech.2016.02.104

Amanullah, M. M., Sekar, S., & Muthukrishnan, P. (2010). Prospects and potential of poultry manure. Asian Journal of Plant Sciences, 9(4), 172–182. https://doi.org/10.3923/ajps.2010.172.182

Andrade, W. R., Xavier, C. A. N., Coca, F. O. C. G., Arruda, L. D. O., & Santos, T. M. (2016). Biogas production from ruminant and monogastric animal manure co-digested with manipueira. Archivos de Zootecnia, (September).

Andriani, D., Wresta, A., Atmaja, T. D., & Saepudin, A. (2014). A review on optimization production and upgrading biogas through CO 2 removal using various techniques. Applied Biochemistry and Biotechnology, 172(4), 1909–1928. https://doi.org/10.1007/s12010-013-0652-x

Anjum, R., Grohmann, E., & Krakat, N. (2016). Anaerobic digestion of nitrogen rich poultry manure : Impact of thermophilic biogas process on metal release and microbial resistances Chemosphere, (November), 1–11. https://doi.org/10.1016/j.chemosphere.2016.11.132

Atasoy, M., & Cetecioglu, Z. (2020). Bio-augmentation of mixed culture fermentation by Clostridium butyricum to enhance butyric acid production. Bioresource Technology.

Atasoy, M., Owusu-Agyeman, I., Plaza, E., & Cetecioglu, Z. (2018). Bio-based volatile fatty acid production and recovery from waste streams: Current status and future challenges. Bioresource Technology, 268, 773–786. https://doi.org/10.1016/j.biortech.2018.07.042

Billen, P., Costa, J., Van Der Aa, L., Van Caneghem, J., & Vandecasteele, C. (2015). Electricity from poultry manure: A cleaner alternative to direct land application. Journal of Cleaner Production, 96, 467–475. https://doi.org/10.1016/j.jclepro.2014.04.016

Budych-Gorzna, M., Smoczynski, M., & Oleskowicz-Popiel, P. (2016). Enhancement of biogas production at the municipal wastewater treatment plant by co-digestion with poultry industry waste. Applied Energy, 161, 387–394. https://doi.org/10.1016/j.apenergy.2015.10.007

Bundhoo, M. A. Z., Mohee, R., & Hassan, M. A. (2015). Effects of pre-treatment technologies on dark fermentative biohydrogen production: A review. Journal of Environmental Management, 157, 20–48. https://doi.org/10.1016/j.jenvman.2015.04.006

Chodová, D., & Tůmová, E. (2020). Insects in chicken nutrition. A review, 18(X). https://doi.org/10.15159/AR.20.003

Domaszewicz, B., Kuliś, M., Figaj, H., Tylkowska-Siek, A., Wątroba, E., Dach-Oleszek, I., & Wieczorkowski, R. (2016). Zwierzęta Gospodarskie w 2015 r. Warsaw. Retrieved from https://stat.gov.pl/files/gfx/portalinformacyjny/pl/defaultaktualnosci/5508/6/16/1/zwierzeta_gospodarskie_w_2015.pdf

Dreschke, G., Papirio, S., Sisinni, D. M. G., Lens, P. N. L., & Esposito, G. (2019). Effect of feed glucose and acetic acid on continuous biohydrogen production by Thermotoga neapolitana. Bioresource Technology, 273(October 2018), 416–424. https://doi.org/10.1016/j.biortech.2018.11.040

Edwiges, T., Frare, L., Mayer, B., Lins, L., Mi Triolo, J., Flotats, X., & de Mendonça Costa, M. S. S. (2018). Influence of chemical composition on biochemical methane potential of fruit and vegetable waste. Waste Management, 71, 618–625. https://doi.org/10.1016/j.wasman.2017.05.030

Fagbohungbe, M. O., Onyeri, C., Adewale, C., & Semple, K. T. (2019). The effect of acidogenic and methanogenic conditions on the availability and stability of carbon, nitrogen and phosphorus in a digestate. Journal of Environmental Chemical Engineering, 7(3), 103138. https://doi.org/10.1016/j.jece.2019.103138

Gallipoli, A., Braguglia, C. M., Gianico, A., Montecchio, D., & Pagliaccia, P. (2020). Kitchen waste valorization through a mild-temperature pretreatment to enhance biogas production and fermentability: Kinetics study in mesophilic and thermophilic regimen. Journal of Environmental Sciences (China), 89(February), 167–179. https://doi.org/10.1016/j.jes.2019.10.016

Ganidi, N., Tyrrel, S., & Cartmell, E. (2009). Anaerobic digestion foaming causes - A review. Bioresource Technology, 100(23), 5546–5554. https://doi.org/10.1016/j.biortech.2009.06.024

García, A. B., & Cammarota, M. C. (2019). Biohydrogen production from pretreated sludge and synthetic and real biodiesel wastewater by dark fermentation. International Journal of Energy Research. https://doi.org/10.1002/er.4376

Hitit, Z. Y., Zampol Lazaro, C., & Hallenbeck, P. C. (2017). Increased hydrogen yield and COD removal from starch/glucose based medium by sequential dark and photo-fermentation using Clostridium butyricum and Rhodopseudomonas palustris. International Journal of Hydrogen Energy, 42(30), 18832–18843. https://doi.org/10.1016/j.ijhydene.2017.05.161

Janczak, D., Malinska, K., Czekała, W., Cáceres, R., Lewicki, A., & Dach, J. (2017). Biochar to reduce ammonia emissions in gaseous and liquid phase during composting of poultry manure with wheat straw, 66, 36–45. https://doi.org/10.1016/j.wasman.2017.04.033

Kaparaju, P., Serrano, M., Thomsen, A. B., Kongjan, P., & Angelidaki, I. (2009). Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresource Technology, 100(9), 2562–2568. https://doi.org/10.1016/j.biortech.2008.11.011

Khoshnevisan, B., Tsapekos, P., Alfaro, N., Díaz, I., Fdz-Polanco, M., Rafiee, S., & Angelidaki, I. (2017). A review on prospects and challenges of biological H2S removal from biogas with focus on biotrickling filtration and microaerobic desulfurization. Biofuel Research Journal, 4(4), 741–750. https://doi.org/10.18331/BRJ2017.4.4.6

Lami, M. (2016). Biogas Production from Co-Digestion of Poultry Manure and Orange Peel through Thermo- Chemical Pre-Treatments in Batch Fermentation, (4), 777–795.

Liu, C., Luo, G., Liu, H., Yang, Z., Angelidaki, I., O-Thong, S., … Wang, W. (2020). CO as electron donor for efficient medium chain carboxylate production by chain elongation: Microbial and thermodynamic insights. Chemical Engineering Journal, 390(February), 124577. https://doi.org/10.1016/j.cej.2020.124577

Mechery, J., Thomas, D. M., Kumar, C. S. P., Joseph, L., & Sylas, V. P. (2019). Biohydrogen production from acidic and alkaline hydrolysates of paddy straw using locally isolated facultative bacteria through dark fermentation. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-019-00515-0

Moriarty, K. (2013). Feasibility Study of Anaerobic Digestion of Food Waste in St. Bernard , Louisiana A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America ’ s Land Initiative : Siting Renewable Energy on Potentially Contaminat. National Renewable Energy Laboratory (NREL), (January), 1–51. https://doi.org/10.1016/S0961-9534

Murarka, A., Dharmadi, Y., Yazdani, S. S., & Gonzalez, R. (2008). Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals. Applied and Environmental Microbiology, 74(4), 1124–1135. https://doi.org/10.1128/AEM.02192-07

Myszograj, S., & Puchalska, E. (2012). Odpady z chowu i uboju drobiu – zagrożenie dla środowiska czy surowiec do produkcji energii Waste from rearing and slaughter of poultry – treat to the environment or feedstock for energy. Medycyna Środowiskowa, 1(3), 106–115.

Nguyen, D., & Khanal, S. K. (2018). A little breath of fresh air into an anaerobic system: How microaeration facilitates anaerobic digestion process. Biotechnology Advances, 36(7), 1971–1983. https://doi.org/10.1016/j.biotechadv.2018.08.007

Nordmann, W. (1977). Die Überwachung der Schlammfaulung. KA-Informationen für das Betriebspersonal. Beilage Zur Korrespondenz Abwasser, 3/77, 77.

Ogundijo, D. S., Adetunji, M. T., Azeez, J. O., & Arowolo, T. A. (2017). Integrated Fertilizer Management : Influence On Soil Nitrogen , Available Phosphorus , Potassium , Nutrient Uptake And ... Integrated Fertilizer Management : Influence on Soil Nitrogen , Available Phosphorus , Potassium ,. Communications in Soil Science and Plant Analysis, 00(00), 1–12. https://doi.org/10.1080/00103624.2017.1311909

Paillet, F., Marone, A., Moscoviz, R., Steyer, J. P., Tapia-Venegas, E., Bernet, N., & Trably, E. (2019). Improvement of biohydrogen production from glycerol in micro-oxidative environment. International Journal of Hydrogen Energy, 44(33), 17802–17812. https://doi.org/10.1016/j.ijhydene.2019.05.082

Pokorna-Krayzelova, L., Vejmelková, D., Selan, L., Jenicek, P., Volcke, E. I. P., & Bartacek, J. (2018). Final products and kinetics of biochemical and chemical sulfide oxidation under microaerobic conditions. Water Science and Technology, 78(9), 1916–1924. https://doi.org/10.2166/wst.2018.485

Rafieenia, R., Girotto, F., Peng, W., Cossu, R., Pivato, A., Raga, R., & Lavagnolo, M. C. (2017). Effect of aerobic pre-treatment on hydrogen and methane production in a two-stage anaerobic digestion process using food waste with different compositions. Waste Management, 59, 194–199. https://doi.org/10.1016/j.wasman.2016.10.028

Sandriaty, R., Priadi, C., Kurnianingsih, S., & Abdillah, A. (2018). Potential of biogas production from anaerobic co-digestion of fat, oil and grease waste and food waste. E3S Web of Conferences, 67, 1–5. https://doi.org/10.1051/e3sconf/20186702047

Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., … Wolfe, J. (2008). Determination of total solids in biomass and total dissolved solids in liquid process samples. National Renewable Energy Laboratory (NREL), (March), 3–5. bagian … ditulis lengkap

Słupek, E., Kucharska, K., & Gębicki, J. (2019). Alternative methods for dark fermentation course analysis. SN Applied Sciences, 1(5), 1–8. https://doi.org/10.1007/s42452-019-0488-2

Sołowski, G., Hrycak, B., Czylkowski, D., Cenian, A., & Pastuszak, K. (2018). Oxygen sensitivity of hydrogenesis ’ and methanogenesis ’. In Pikoń Krzysztof (Ed.), Contemporary Problems of Power Engineering and Environmental Protection 2017 (1st ed., pp. 157–159). Gliwice: Department of Technologies and Installations for Waste Management. https://doi.org/http://cleanalternative.eu/wp-content/uploads/2018/01/Merged_OSWE_book.pdf

Sołowski, G., Hrycak, B., Czylkowski, D., Konkol, I., Pastuszak, K., & Cenian, A. (2019). Hydrogen and Methane Production Under Conditions of Dark Fermentation Process with Low Oxygen Concentration. In K. Jibin, N. Kalarikkal, S. Thomas, & A. Nzihou (Eds.), Re-Use and Recycling of Materials Solid Waste Management and Water Treatment (1st ed., pp. 263–272). Gistrup: River Publisher.

Suchowska-Kisielewicz, M. (2014). Testing of Co-Fermentation of Poultry Manure and Corn Silage. Civil and Environmental Engineering Reports, 13(January 2014), 31–47. https://doi.org/10.2478/ceer-2014-0013

Tang, G.-L., Huang, J., Sun, Z.-J., Tang, Q.-Q., Yan, C.-H., & Liu, G.-Q. (2008). Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia: influence of fermentation temperature and pH. Journal of Bioscience and Bioengineering, 106(1), 80–87. https://doi.org/10.1263/jbb.106.80

Theuerl, S., Klang, J., & Prochnow, A. (2019). Process disturbances in agricultural biogas production—causes, mechanisms and effects on the biogas microbiome: A review. Energies, 12(3). https://doi.org/10.3390/en12030365

Toledo-Alarcón, J., Capson-Tojo, G., Marone, A., & Paillet, F. (2017). Basics of bio-hydrogen production by dark fermentation. In Bioreactors for Microbial Biomass and Energy Conversion (pp. 199–220).

Trchounian, K., & Trchounian, A. (2015). Hydrogen production from glycerol by Escherichia coli and other bacteria: An overview and perspectives. Applied Energy, 156, 174–184. https://doi.org/10.1016/j.apenergy.2015.07.009

Yuan, T., Bian, S., Ko, J. H., Wu, H., & Xu, Q. (2019). Enhancement of hydrogen production using untreated inoculum in two-stage food waste digestion. Bioresource Technology, 189–196. https://doi.org/10.1016/j.biortech.2019.03.020

Zhang, J., Zhang, R., Wang, H., & Yang, K. (2020). Direct interspecies electron transfer stimulated by granular activated carbon enhances anaerobic methanation efficiency from typical kitchen waste lipid-rapeseed oil. Science of the Total Environment, 704, 135282. https://doi.org/10.1016/j.scitotenv.2019.135282



DOI: https://doi.org/10.22146/agritech.56792

Article Metrics

Abstract views : 2347 | views : 1675

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Gaweł Sołowski, Izabela Konkol, Marwa Shalaby

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

agriTECH has been Indexed by:


agriTECH (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.


website statisticsView My Stats