Model Prediksi Hasil Panen Berdasarkan Pengukuran Non-Destruktif Nilai Klorofil Tanaman Padi
Fitri Hidayah Nasution(1*), Santosa Santosa(2), Renny Eka Putri(3)
(1) Mahasiswa Program Magister Teknik Pertanian, Fakultas Teknologi Pertanian, Univeritas Andalas
(2) Program Studi Teknik Pertanian, Teknologi Pertanian, Universitas Andalas, Kampus Limau Manis, Jl. Universitas Andalas, Limau Manis, Kecamatan Pauh, Kota Padang, Sumatera Barat 25163
(3) Program Studi Teknik Pertanian, Teknologi Pertanian, Universitas Andalas, Kampus Limau Manis, Jl. Universitas Andalas, Limau Manis, Kecamatan Pauh, Kota Padang, Sumatera Barat 25163
(*) Corresponding Author
Abstract
Developing yield prediction model was done to predict the production of rice crops based on chlorophyll value at different age levels. A model was developed by using spatial variability data of chlorophyll value. It was measured with a non-destructive method by using chlorophyll meter CCM-200 plus at different age levels in terms of days after planting 25, 40, 60 and 70 (DAP), and yield of rice. The objective of developing yield prediction model was to describe correlation between chlorophyll value and yield at different ages that had been obtained from 20 observation plots at the rice field. The study area was in Banda Langik, Sungai Bangek village, Lubuk Minturun of Koto Tangah sub district in Padang. Data were collected in two systems; grid sampling point and crop cutting test (CCT). Measuring of chlorophyll contained in leaf or number of SPAD (soil plant analysis development) was done by using chlorophyll meter CCM-200 plus. The research showed that chlorophyll value in rice crop correlated with yield. It was proved by correlation index obtained in each stage of age; 25 DAP (r = 0.945), 40 DAP (r = 0.887), 60 DAP (r= 0.835) and 70 DAP (r= 0.897). Rice yield could be predicted through following model: Y = -0.431513 + 0.045144 X1 + 0.03645 X2 + 0.01017 X3 + 0.020551 X4, where Y was the rice yield (kg/m2) and X was chlorophyll value at different age levels (X1=25 DAP), (X2=40 DAP), (X3=60 DAP) and (X4= 70 DAP). The model was produced through a multiple linear regression test based on chlorophyll value data and rice productivity during 1 period of harvest session.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Cen, H., Shao, Y., Song, H., & He, Y. (2006). Non-destructive Estimation of Rape Nitrogen Status using SPAD Chlorophyll Meter. ICSP.
Darmawan, S. (2007). Precision Farming Sebagai Sistem Pendukung Keputusan. http://ppibaraki.wordpress.com/2007/11/29/51/ [Diakses 20 Juni 2016].
De Datta, S. K. (1981). Principles and Practice of Rice Production. New York: John Willey and Sons, 618p.
Furuya, S. (1987). Growth diagnosis of rice plants by means of leaf color. Japanese Agricultural Research Quarterly, 20, 147-153.
Furuya, S. (2007). Growth diagnosis of rice plants by means of leaf colour. JARQ, 20(3), 147-153.
Gholizadeth, A., Amin, M. S. M., Anuar, A. R., & Aimrun, W. (2009). Evaluation of SPAD chlorophyll meter in two different rice growth stages and its temporal variability. European Journal of Scientific Research, 37, 591-598.
Hayati, F. D. (2012). Pengujian Teknik Interpolasi Sediaan Tegakan dan Biomassa Berbasis IHMB pada Hutan Lahan Kering PT. Trisetia Intiga, Kabupaten Lamandau, Kalimantan Tengah. Skripsi. Bogor: Institut Pertanian Bogor.
Hussain, F., Bronson, K. F., Singh, Y., Singh, B., & Peng, S. (2000). Use of chlorophyll metersufficiency indices for nitrogen management of irrigated rice in Asia. Agron. J., 92, 875-879.
International Rice Research institute (IRRI). (2002). Rice Almanac. Source Book for the Most Important Economic Activity on Earth. Metro Manilla, Philippines, 257 p: International Rice Research institute.
Maksum, C. (1998). Sistim Pengumpulan dan Pengolahan Data Statistik Tanaman Padi di Indonesia. Lokakarya Sistim Pemantauan dan Prediksi Padi di Indonesia. Jakarta: SARI Project – BPP Teknologi.
Pingali, P. L., Hossain, M., & Gerpacio, R.V. (1997). Asian Rice Bowls: The Returning Crisis. Manila: International Rice Research Institute (IRRI).
Prasad, R. (2006). Fertilizer Nitrogen: Requirements and Management. In Global Aspects of Food Production M. S. Swaminathan & S. K. Sinha (Eds.) (pp. 199-226). New Jersey-United States: Tycooly International Riverton.
Putri, R. E., Yahya, A., Adam, N. M., & Aziz, S. A. (2016). Variability of Rice Yield With Respect To Crop Health. Jurnal Teknologi, 78(1-2), 79-85.
Santosa. (2012). Buku Ajar Metodologi Penelitian. Bogor: IPB Press.
Sastrosupadi. (2000). Rancangan Percobaan Praktis Bidang Pertanian. Edisi Revisi. Jakarta: Penerbit Kanisius.
Suryana, A. & Mardianto, S. (2001). Bunga Rampai Ekonomi Beras. Jakarta: LPEM FEUI.
Turner, F. T. & Jund, M. F. (1991). Chlorophyll meter to predict nitrogen topdress requirement for semidwarf rice. Agronomi Journal, 83 (5) 926-928.
Varvel, G. E., Wilhelm, W. W., Shanahan, J. F., & Schepers, J. S. (2007). An algorithm for corn nitrogen recommendations using a chlorophyll meter based sufficiency index. Agron. J., 99: 701-706. http://doi.org/10.2134/agronj2006.0190
DOI: https://doi.org/10.22146/agritech.34893
Article Metrics
Abstract views : 6668 | views : 21207Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Fitri Hidayah Nasution, Santosa Santosa, Renny Eka Putri
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
agriTECH has been Indexed by:
agriTECH (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.