The Effect of Drying Method on The Quality of MOCAF (Modified Cassava Flour) from Raw Material Beta-Carotene-Rich Bokor Genotype Cassava

https://doi.org/10.22146/agritech.84155

Aqsha Putri Aprilia(1), Rois Fathoni(2), Ahmad Fathoni(3), Raden Haryo Bimo Setiarto(4*), Ema Damayanti(5)

(1) Program Study of Chemical Engineering, Faculty of Engineering, Muhammadiyah University of Surakarta, Jl. A. Yani, Pabelan, Kartasura, Sukoharjo, Central Java 57169
(2) Program Study of Chemical Engineering, Faculty of Engineering, Muhammadiyah University of Surakarta, Jl. A. Yani, Pabelan, Kartasura, Sukoharjo, Central Java 57169
(3) Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Jalan Raya Bogor Km 46, Cibinong Science Center, Cibinong, Bogor, 16911 West Java
(4) Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Jalan Raya Bogor Km 46, Cibinong Science Center, Cibinong, Bogor, 16911 West Java
(5) Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Jalan Jogja – Wonosari KM 31.5, Gading Village, Playen, Gunung kidul, Yogyakarta
(*) Corresponding Author

Abstract


The high dependence on flour imports is a significant challenge to overcome by processing local food ingredients through diversification. To address this challenge, the use of MOCAF (Modified Cassava Flour) as a substitute for wheat flour has been carried out in the manufacture of wet and dry noodles, along with analog rice, and bread. The optimization of MOCAF production from beta-carotene-rich cassava depends on the selection of appropriate equipment technology and drying process. Therefore, this study aimed to analyze the effect of drying method on MOCAF characteristics of beta-carotene-rich cassava genotype. The analysis was carried out using two methods, namely sun drying for 3-4 days and oven drying at 60 o C for 24 hours. Parameters analyzed included viscosity, solubility, syneresis, Near Infra-Red analysis, proximate analysis, and Scanning Electron Microscope (SEM). The results showed that drying affected the physicochemical properties of MOCAF, including viscosity, solubility, and syneresis. NIR (Near-infrared) and proximate analysis showed that drying process affected the decrease in moisture, ash, protein, and fat content, along with an increase in crude fiber, and dry fiber matter content. Furthermore, SEM microstructural analysis resulted in the reformation of starch granules, characterized by changes in morphology and structure, such as the separation of irregular spherical shapes, and hollowness.


Keywords


Beta-carotene; MOCAF; proximate; NIR (Near infrared); SEM (Scanning Electron Microscope); types of drying method

Full Text:

PDF


References

Adegunwa, M. O., Sanni, L. O., & Maziya-Dixon, B. (2011). Effects of fermentation length and varieties on the pasting properties of sour cassava starch. African Journal of Biotechnology, 10(42), 8428–8433.

Aisah, A., Harini, N., & Damat, D. (2021). Pengaruh Waktu dan Suhu Pengeringan Menggunakan Pengering Kabinet dalam Pembuatan MOCAF (Modified Cassava Flour) dengan Fermentasi Ragi Tape. Food Technology and Halal Science Journal, 4(2), 172–191. https://doi.org/10.22219/fths.v4i2.16595

Akinrele, I. (1964). Fermentation of cassava. Journal of the Science of Food and Agriculture, 15(9), 589–594.

Al-Fa’izah, Z., Rahayu, Y. ., & Hikmah, N. (2017). Digital Repository Universitas Jember Digital Repository Universitas Jember. Efektifitas Penyuluhan Gizi Pada Kelompok 1000 HPK Dalam Meningkatkan Pengetahuan Dan Sikap Kesadaran Gizi, 3(3), 69–70.

Alonso Gomez, L., Niño‐López, A. M., Romero‐Garzón, A. M., Pineda‐Gomez, P., del Real‐Lopez, A., & Rodriguez‐Garcia, M. E. (2016). Physicochemical transformation of cassava starch during fermentation for production of sour starch in Colombia. Starch, 68(11–12), 1139–1147.

Andyarini, E. N., & Hidayati, I. (2017). Analisis Proksimat Pada Tepung Biji Nangka (Artocarpus Heterophyllus Lamk.). KLOROFIL: Jurnal Ilmu Biologi Dan Terapan, 1(1), 32. https://doi.org/10.30821/kfl:jibt.v1i1.1239

Ariwibowo, D., & Paramita, V. (2018). Seminar Nasional Kolaborasi Pengembangan Prototipe Dispersion Rotary Dryer Untuk Meningkatkan Produktivitas Industri MOCAF. Seminar Nasional Kolaborasi Pengabdian Pada Masyarakat, 1, 52–59.

AOAC. (2010). Official methods of analysis of the association of the analytical chemists. Maryland, USA.

Bemiller, J. N. (1997). Starch modification: Challenges and prospects. Starch Staerke, 49(4), 127–131.

Budiarti, G. I., & Sulistiawati, E. (2019). Aplikasi Hydrogen Rich Water Pada Modifikasi Tepung Kentang Dengan Pengering Gelombang Mikro Sebagai Alternatif Substitusi Gandum. Elkawnie, 5(2), 128. https://doi.org/10.22373/ekw.v5i2.4704

Büning-pfaue, H. and S. Kehraus. 2001. Application of near infrared spectroscopy (NIRS) in the analysis of frying oils. Eur. J. Lipid Sci. Technol. 103: 793–797.

Camargo, C., Colonna, P., Buleon, A., & Richard‐Molard, D. (1988). Functional properties of sour cassava (Manihot utilissima) starch: Polvilho azedo. Journal of the Science of Food and Agriculture, 45(3), 273–289.

Cardenas, O., & De Buckle, T. (1980). Sour cassava starch production: A preliminary study. Journal of Food Science, 45(6), 1509–1512.

Collins, T. J. (2007). ImageJ for microscopy. Biotechniques 43(S1): S25-S30.

de Barros Mesquita, C., Leonel, M., Franco, C. M. L., Leonel, S., Garcia, E. L., & dos Santos, T. P. R. (2016). Characterization of banana starches obtained from cultivars grown in Brazil. International Journal of Biological Macromolecules, 89, 632–639. https://doi.org/10.1016/j.ijbiomac.2016.05.040

Demiate, I. M., Barana, A. C., Cereda, M. P., & Wosiacki, G. (1999). Organic acid profile of commercial sour cassava starch. Food Science and Technology, 19(1), 131–135.

Díaz, A., Dini, C., Viña, S. Z., & García, M. A. (2018). Technological properties of sour cassava starches: Effect of fermentation and drying processes. Lebensmittel Wissenschaft und -Technologie- Food Science and Technology, 93, 116–123.

Diniyah, N., Subagio, A., Nur Lutfian Sari, R., Gita Vindy, P., & Ainur Rofiah, A. (2018). Effect of Fermentation Time and Cassava Varieties on Moisture content and the Yield of Starch from Modified Cassava Flour (MOCAF). Indonesian Journal of Pharmaceutical Science and Technology, 5(2), 71. https://doi.org/10.24198/ijpst.v5i3.15094

Emmanuel, O., Clement, A., Agnes, S., Chiwona-Karltun, L., & Drinah, B. (2012). Chemical composition and cyanogenic potential of traditional and high yielding CMD resistant cassava (Manihot esculenta Crantz) varieties. International Food Research Journal, 19(1), 175–181.

Dipowaseso, D. A., Nurwantoro, N., & Hintono, A. (2018). Karakteristik Fisik dan Daya Oles Selai Kolang-Kaling yang Dibuat Melalui Subsitusi Pektin Dengan Modified Cassava Flour (MOCAF) Sebagai Bahan Pengental. Jurnal Teknologi Pangan, 2(1), 1–7. https://ejournal3.undip.ac.id/index.php/tekpangan/article/view/20680

Erni, N., Kadirman, dan Fadilah, R. 2018. Pengaruh Suhu dan Lama Pengeringan Terhadap Sifat Kimia dan Organoleptik Tepung Umbi Talas (Colocasia Esculenta).Jurnal Pendidikan Teknologi Pertanian, 4(1), 95–105.

Hersoelistyorini, W., Dewi, S. S., & Kumoro, A. C. (2015). Sifat Fisikokimia dan Organoleptik Tepung MOCAF (Modified Cassava Flour) dengan Fermentasi Menggunakan Ekstrak Kubis. The 2nd University Research Coloquium, 10–17.

Ihromi, S., Marianah, M., & Susandi, Y. A. (2018). Subsitusi Tepung Terigu Dengan Tepung MOCAF Dalam Pembuatan Kue Kering. Jurnal Agrotek UMMat, 5(1), 73. https://doi.org/10.31764/agrotek.v5i1.271

Iswari, K., Astuti, H. F., & Srimaryati. (2016). Pengaruh lama fermentasi terhadap mutu tepung cassava termodofikasi. Membangun Pertanian Modern Dan Inovatif Berkelanjutan Dalam Rangka Mendukung MEA, 2010, 1250–1257.

Julianti, E., Lubis, Z., Ridwansyah, E. Y., & Suhaidi, I. (2011). Physicochemical and functional properties of fermented starch from four cassava varieties. Asian Journal of Agricultural Research, 5(6), 292–299

Lengkey, L. C. E. C. H., Budiastra, I. W., Seminar, K. B., & Purwoko, B. S. (2013). Model Pendugaan Kandungan Air , Lemak Dan Asm Lemak Bebas Pada Tiga Provenan Biji Jarak Pagar ( Jatropha curcas L .) Menggunakan Spektrometri Inframerah Dekat Dengan Metode Partial Least Square( PLS ) Prediction Model of Moisture , Fat , and Free Fatty. 19(4).

Lubis I. H. 2008. Pengaruh Suhu dan Lama Pengeringan Terhadap Mutu Tepung Pandan. Skripsi. Universitas Sumatera Utara.

Lopulalan, C. G. C., Mailoa, M., & Pelu, H. (2016). Analisa Sifat Kimia Dan Fisik Modified Cassava Flour (MOCAF) (Varietas Lokal Sangkola) Asal Desa Waai, Maluku Tengah. AGRITEKNO: Jurnal Teknologi Pertanian, 5(1), 7. https://doi.org/10.30598/jagritekno.2016.5.1.7

Man, Y.B.C. and M.H. Moh. 1988. Determination of free fatty acids in palm oil by near-infrared reflectance spectroscopy. JAOCS. 75(5): 559-562.

Margana, A. S., & Oktaviana, D. (2017). Kaji eksperimental pemanfaatan panas kondenser pada sistem vacuum drying untuk produk kentang. Seminar MASTER PPNS, 1509, 115–120.

Martinez, A., & Quiroga, M. (1988). Study of some physicochemical properties of cassava starch during fermentation. Technologia, 28(1), 23.

Mestres, C., & Rouau, X. (1997). Influence of natural fermentation and drying conditions on the physicochemical characteristics of cassava starch. Journal of the Science of Food and Agriculture, 74(2), 147–155.

Moorthy, S. N., George, M., & Padmaja, G. (1993). Functional properties of the starchy flour extracted from cassava on fermentation with a mixed culture inoculum. Journal of the Science of Food and Agriculture, 61, 443–447.

Mulyandari, S.H. 1992. Kajian Perbandingan Sifat-Sifat Pati UmbiUmbian dan Pati Biji-Bijian. IPB, Bogor.

Nakamura, I., & Park, Y. (1975). Some physico‐chemical properties of fermented cassava starch (Polvilho azedo). Starch Staerke, 27(9), 295–297.

O'Brien, N. A., Hulse, C. A., Friedrich, D. M., Van Milligen, F. J., von Gunten, M. K., Pfeifer, F., and Siesler, H. W. (2012). Miniature near-infrared (NIR) spectrometer engine for handheld applications. In Next-generation spectroscopic technologies V (8374): 31-38. SPIE.

Oyewole, O., & Afolami, O. (2001). Quality and preference of different cassava varieties for 'lafun' production. Journal of Food Technology in Africa, 6, 27–29.

Oyewole, O., & Odunfa, S. (1988). Microbiological studies on cassava fermentation for ‘lafun’ production. Food Microbiology, 5(3), 125–133.

Oyewole, O. B., & Odunfa, S. A. (1989). Effects of fermentation on the carbohydrate, mineral and protein contents of cassava during 'fufu' production. Journal of Food Composition and Analysis, 2, 170–176.

Oyeyinka, S. A., Ajayi, O. I., Gbadebo, C. T., Kayode, R. M., Karim, O. R., & Adeloye, A. A. (2019). Physicochemical properties of gari prepared from frozen cassava roots. Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology, 99, 594–599.

Pasquini, C. 2003. Review: Near infra red spectroscopy: fundamental, practical aspects, and analytical applications. J. Braz. Chem. Soc. 15(2): 198-219.

Penido, F. C. L., Piló, F. B., de Cicco Sandes, S. H., Nunes, Á. C., Colen, G., de Souza Oliveira, E. (2018). Selection of starter cultures for the production of sour cassava starch in a pilot-scale fermentation process. Brazilian Journal of Microbiology, 49, 823–831

Philia, J., Widayat, Hadiyanto, Suzery, M., & Budianto, I. A. (2020). Diversifikasi Tepung MOCAF Menjadi Produk Mie Sehat Di PT. Tepung MOCAF Solusindo. Indonesia Journal of Halal, 2(2), 40–45.

Prayitno, S. A., Tjiptaningdyah, R., & Hartati, F. K. (2018). Sifat Kimia dan Organoleptik Brownies Kukus dari Proporsi Tepung MOCAF dan Terigu. Jurnal Teknologi Dan Industri Pertanian Indonesia, 10(1), 21–27. https://doi.org/10.17969/jtipi.v10i1.10162

Priandono, A., Sani, E. Y., Haryanti, S., & Bekti, E. K. (2018). Konsentrasi Tepung MOCAF Terhadap Sifat Kimia dan Organoleptik Dendeng Jamur Tiram (Pleurotus ostreatus). Teknologi Hasil Pertanian.

Putri, N. A., Herlina, H., & Subagio, A. (2018). Karakteristik MOCAF (Modified Cassava Flour) Berdasarkan Metode Penggilingan dan Lama Fermentasi. Jurnal Agroteknologi, 12(01), 79. https://doi.org/10.19184/j-agt.v12i1.8252

Rahman, N., Supatmi, S., Fitriani, H., & Hartati, N. S. (2020). Morphological Variation and Beta Carotene Contents of Several Clones of Ubi Kuning Cassava Genotype Derived from Irradiated Shoot in vitro. Jurnal ILMU DASAR, 21(2), 73. https://doi.org/10.19184/jid.v21i2.9307

Sefrienda, A. R., Ariani, D., & Fathoni, A. (2020). Karakteristik Mi Berbasis Tepung Ubi Kayu Termodifikasi (MOCAF) Yang Diperkaya Ekstrak Wortel (Daucus carota). Jurnal Riset Teknologi Industri, 14(2), 133. https://doi.org/10.26578/jrti.v14i2.5777

Westby, A., & Cereda, M. P. (1994). Production of fermented cassava starch (Polvilho azedo) in Brazil. Tropical Science, 34(2), 203–210

Widyaningrum, W., Purwanto, Y.A., Widodo, S., Supijatno, & Iriani, E. S. (2022). Portable/Handheld NIR sebagai Teknologi Evaluasi Mutu Bahan Pertanian secara Non-Destruktif. Jurnal Keteknikan Pertanian, 10(1), 59–68. https://doi.org/10.19028/jtep.010.1.59-68

Wulan, T. (2018). Pemanfaatan Tepung MOCAF (Modified Cassava Flour). 8(1), 20–31. https://repository.polipangkep.ac.id/uploaded_files/dokumen_isi/Terbitan Berkala/03. Sampul - BAB III-compressed.pdf

Winarno, F.G. 2004. Kimia Pangan dan Gizi. Gramedia Pustaka Utama, Jakarta.

Yani, A. V., & Akbar, M. (2018). Pembuatan Tepung MOCAF (Modified Cassava Flour) dengan berbagai Varietas Ubi Kayu dan Lama Fermentasi. Jurnal Edible, 7(1), 40–48. https://jurnal.um-palembang.ac.id/edible/article/view/1655/1389

Yerizam, M., Purnamasari, I., Fani Dillah, V., & Pakpahan, C. (2019). Performance of Rotary Dryer on Manihot Esculenta Chips Drying for MOCAF Production Based on Various Time, Temperatur and Drying Rate. Jurnal Kinetika, 10(02), 24–28. https://jurnal.polsri.ac.id/index.php/kimia/index

Ying, D., Schwander, S., Weerakkody, R., Sanguansri, L., Gantenbein-Demarchi, C. and Augustin, M. A. (2013). Microencapsulated Lactobacillus rhamnosus GG in whey protein and resistant starch matrices: Probiotic survival in fruit juice. Journal of functional foods, 5(1), 98-105.

Zhu, F. (2015). Composition, structure, physicochemical properties, and modifications of cassava starch. Carbohydrate Polymers, 122, 456–480.



DOI: https://doi.org/10.22146/agritech.84155

Article Metrics

Abstract views : 1419 | views : 780

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Aqsha Putri Aprilia, Rois Fathoni, Ahmad Fathoni, Raden Haryo Bimo Setiarto, Ema Damayanti

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

agriTECH has been Indexed by:


agriTECH (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.


website statisticsView My Stats