Potensi Limbah Cair Batik sebagai Sumber Bioenergi (Studi Kasus di UKM Batik Blimbing Malang)
Nur Hidayat(1), Martasari Beti Pangestuti(2), Reny Nurul Utami(3), Sri Suhartini(4*)
(1) Jurusan Teknologi Industri Pertanian, Fakultas Teknologi Pertanian, Universitas Brawijaya, Jl. Veteran, Malang 65145
(2) Jurusan Teknologi Industri Pertanian, Fakultas Teknologi Pertanian, Universitas Brawijaya, Jl. Veteran, Malang 65145
(3) Jurusan Teknologi Industri Pertanian, Fakultas Teknologi Pertanian, Universitas Brawijaya, Jl. Veteran, Malang 65145
(4) Jurusan Teknologi Industri Pertanian, Fakultas Teknologi Pertanian, Universitas Brawijaya, Jl. Veteran, Malang 65145
(*) Corresponding Author
Abstract
Batik merupakan salah satu produk kebanggaan bangsa Indonesia, yang umumnya diproduksi oleh usaha kecil menengah (UKM). Peningkatan permintaan batik mendorong adanya peningkatan jumlah UKM batik serta jumlah limbah cair batik yang dihasilkan. Masih banyak UKM batik yang membuang limbah cairnya langsung ke lingkungan yang berpotensi menimbulkan pencemaran pada tanah dan air. Hal ini disebabkan oleh belum adanya fasilitas pengolahan limbah yang memadai, sesuai dengan kondisi yang dialami oleh UKM Batik Blimbing Malang. Penelitian ini bertujuan untuk mengidentifikasi potensi pengolahan limbah cair batik secara anaerobik untuk memproduksi biogas sebagai sumber energi terbarukan. Pada penelitian ini digunakan teknologi anaerobic digestion yang dioperasikan secara batch dengan kondisi mesofilik (37 °C) tanpa pengadukan, dikenal sebagai uji biochemical methane potential (BMP) dengan waktu pengamatan selama 28 hari. Sampel yang diuji meliputi penambahan 100% limbah cair batik dengan berbagai variasi volume. Hasil penelitian menunjukkan bahwa limbah cair batik memiliki kandungan bahan pencemar organik yang tinggi, yaitu sebesar 8.651 mg/L (BOD) dan 54.700 mg/L (COD). Hasil uji BMP juga menunjukkan rendahnya biogas yang dapat diproduksi dari limbah cair batik. Kondisi ini disebabkan oleh beberapa faktor antara lain tingginya kandungan COD, ammonia, zat pewarna beracun, dan nisbah C/N yang berpengaruh negatif terhadap pertumbuhan mikroorganisme.
Keywords
Full Text:
PDFReferences
Afrian, C., Haryanto, A., Hasanudin, U., & Zulkarnain, I. (2017). Produksi biogas dari campuran kotoran sapi dengan rumput gajar (Pennisetum purpureum). Jurnal Teknik Pertanian Lampung, 6(1), 21–32.
Al Seadi, T., Drosg, B., Fuchs, W., Rutz, D., & Janssen, R. (2013). Biogas digestate quality and utilization. In The Biogas Handbook (pp. 267–301). Woodhead Publishing. https://doi.org/10.1533/9780857097415.2.267
APHA. (2005). Standard Methods for the Examination of Water and Wastewater2005No Title. American Public Health Association, Water Environment Federation.
Apollo, S., Onyango, M. S., & Ochieng, A. (2014). Integrated UV photodegradation and anaerobic digestion of textile dye for efficient biogas production using zeolite. Chemical Engineering Journal, 245(1), 241–247. https://doi.org/10.1016/j.cej.2014.02.027
Aryani, Y., Sunarto., & Widiyani, T. (2004). Toksisitas akut limbah cair pabrik batik CV. Giyant Santoso Surakarta dan efek sublethalnya terhadap struktur mikroanatomi branchia dan hepar ikan nila (Oreochromis niloticus T.). Jurnal BioSmart., 6(2), 147–153.
Audina, O., & Rahmadyanti, E. (2019). Kinerja hybrid constructed wetland sebagai upaya pelestarian sumber daya air pada pengolahan limbah cair industri batik di Sidoarjo. Jurnal Rekayasa Teknik Sipil, 3(1), 1–8.
Birgani, P. M., Ranjbar, N., Abdullah, R. C., Wong, K. T., Lee, G., Ibrahim, S., & Jang, M. (2016). An efficient and economical treatment for batik textile wastewater containing high levels of silicate and organic pollutants using a sequential process of acidification, magnesium oxide, and palm shell-based activated carbon application. Journal of Environmental Management, 184, 229–239. https://doi.org/10.1016/j.jenvman.2016.09.066
Bjornsson, W. J., Nicol, R. W., Dickinson, K. E., & McGinn, P. J. (2013). Anaerobic digestates are useful nutrient sources for microalgae cultivation: functional coupling of energy and biomass production. Journal of Applied Phycology, 25(5), 1523–1528. https://doi.org/10.1007/s10811-012-9968-0
Bona, D., Papurello, D., Flaim, G., Cerasino, L., Biasioli, F., & Silvestri, S. (2020). Management of digestate and exhausts from solid oxide fuel cells produced in the dry anaerobic digestion pilot plant: microalgae cultivation approach. Waste and Biomass Valorization, 1–6. https://doi.org/10.1007/s12649-019-00931-3
Budiyono, Khaerunnisa, G., & Rahmawati, I. (2013). Pengaruh pH dan rasio COD:N terhadap produksi biogas dengan bahan baku limbah industri alkohol (vinasse). Eksergi Jurnal Prodi Teknik Kimia, 11(1), 1–6.
Chan, Y. J., Chong, M. F., Law, C. L., & Hassell, D. G. (2009). A review on anaerobic-aerobic treatment of industrial and municipal wastewater. Chemical Engineering Journal, 155, 1–18. https://doi.org/10.1016/j.cej.2009.06.041
Choong, C. E., Ibrahim, S., & Basirun, W. J. (2019). Mesoporous silica from batik sludge impregnated with aluminum hydroxide for the removal of bisphenol A and ibuprofen. Journal of Colloid and Interface Science, 541, 12–17. https://doi.org/10.1016/j.jcis.2019.01.071
Cioabla, A. E., Ionel, I., Dumitrel, G., & Popescu, F. (2012). Comparative study on factors affecting anaerobic digestion of agricultural vegetal residues. Biotechnology for Biofuels, 5(39), 1–9. https://doi.org/10.1186/1754-6834-5-39
Delée, W., O’Neill, C., Hawkes, F. R., & Pinheiro, H. M. (1998). Anaerobic treatment of textile effluents: a review. Journal Chemical Technology and Biotechnology, 73, 323–335. https://doi.org/10.1002/(SICI)1097-4660(199812)73:4<323::AID-JCTB976>3.0.CO;2-S
Desiana, D., & Setiadi, T. (2009). Effect of ozonation and sonication on biochemical methane potential of biosludge from textile mill effluent. Water, Air and Soil Pollution: Focus, 9, 461–467. https://doi.org/10.1007/s11267-009-9239-5
Dewanti, B. S. D., Prastiwi, T. F., & Haji, A. T. S. (2019). Pengolahan limbah cair batik menggunakan kombinasi metode netralisasi dan elektrokoagulasi. Jurnal Rekayasa Dan Manajemen Agroindustri, 7(3), 358–369.
Dioha, I. J., Ikeme, C. H., Nafi’u, T., Soba, N. I., & Yusuf, M. B. S. (2014). Effect of carbon to nitrogen ratio on biogas production. International Research Journal of Natural Sciences, 2(1), 27–36.
Enjarlis., Hartanto, S., Christwardana, M., Sijabat, B. F., & Fatian, O. R. (2019). Kombinasi proses elektrokoagulasi-oksidasi lanjut berbasis O3/GAC pada limbah cair industri batik. Jurnal Rekayasa Kimia Dan Lingkungan, 14(1), 44–52. https://doi.org/10.23955/rkl.v14i1.12274
Fazal, T., Mushtaq, A., Rehman, F., Khan, A. U., Rashid, N., Farooq, W., Rehman, M. S. U., & Xu, J. (2018). Bioremediation of textile wastewater and successive biodiesel production using microalgae. Renewable and Sustainable Energy Reviews, 82, 3107–3126. https://doi.org/10.1016/j.rser.2017.10.029
Febriyanti, C. P., & Winanti, E. T. (2020). Efektifitas pengolahan limbah cair industri batik sidoarjo menjadi air bening non-konsumsi menggunakan integrasi floculation coagulation dan constructed wetland. Jurnal Rekayasa Teknik Sipil, 1(1), 1–10.
Firmansyah, G. A., & Rahmadyanti, E. (2019). Optimalisasi pengolahan air limbah industri batik menggunakan integrasi biofilter dan constructed wetlands sebagai sumber daya air terbarukan. Jurnal Rekayasa Teknik Sipil, 3(1), 1–10.
Gelegenis, J., Georgakakis, D., Angelidaki, I., & Mavris, V. (2007). Optimization of biogas production by co-digesting whey with diluted poultry manure. Renewable Energy, 32(13), 2147–2160. https://doi.org/10.1016/j.renene.2006.11.015
Hardyanti, I. S., Nurani, I., Hardjono, D. S., Apriliani, E., & Wibowo, E. A. P. (2017). Pemanfaatan silika (SiO2) dan bentonit sebagai adsorben logam berat Fe pada limbah batik. Jurnal Sains Terapan, 3(2), 37–41. https://doi.org/10.32487/jst.v3i2.257
Hassaneen, F. Y., Abdallah, M. S., Ahmed, N., Taha, M. M., Abd ElAziz, S. M. M., El-Mokhtar, M. A., Badary, M. S., & Allam, N. K. (2020). Innovative nanocomposite formulations for enhancing biogas and biofertilizers production from anaerobic digestion of organic waste. Bioresource Technology, 309(123350), 1–7. https://doi.org/10.1016/j.biortech.2020.123350
Karamah, E. F., & Nurcahyani, P. A. (2019). Degradation of blue KN-R dye in batik effluent by an advanced oxidation process using a combination of ozonation and hydrodynamic cavitation. Indonesian Journal Chemistry, 19(1), 41–47. https://doi.org/10.22146/ijc.26733
Khalik, W. F., Ho, L., Ong, S., Wong, Y., Yusoff, N. A., & Ridwan, F. (2015). Decolorization and mineralization of batik wastewater through solar photocatalytic process. Sains Malaysiana, 44(4), 607–612. http://doi.org/10.17576/jsm-2015-4404-16
Kristijanto, A. I., Handayani, W., & Levi, P. A. A. (2011). The effectiveness of anaerobic baffled reactor and rotating biological contactor in batik wastewater treatment. Makara Journal of Technology, 15(2), 168–172. http://doi.org/10.7454/mst.v15i2.935
Kurniawan, M. W., Purwanto, P., & Sudarno, S. (2013). Strategi pengelolaan air limbah sentra UMKM batik yang berkelanjutan di Kabupaten Sukoharjo. Jurnal Ilmu Lingkungan, 11(2), 62–72. https://doi.org/10.14710/jil.11.2.62-72
Lay, C. H., Kuo, S. Y., Sen, B., Chen, C. C., Chang, J. S., & Lin, C. Y. (2012). Fermentative biohydrogen production from starch-containing textile wastewater. International Journal of Hydrogen Energy, 37(2), 2050–2057. https://doi.org/10.1016/j.ijhydene.2011.08.003
Lim, S. J., & Fox, P. (2013). Biochemical methane potential (BMP) test for thickened sludge using anaerobic granular sludge at different inoculum/substrate ratios. Biotechnology and Bioprocess Engineering, 18(2), 306–312. https://doi.org/10.1007/s12257-012-0465-8
Lin, C. Y., Nguyen, M. L. T., & Lay, C. H. (2017). Starch-containing textile wastewater treatment for biogas and microalgae biomass production. Journal of Cleaner Production, 168, 331–337. https://doi.org/10.1016/j.jclepro.2017.09.036
Lv, Z., Liang, J., Chen, X., Chen, Z., Jiang, J., & Loake, G. J. (2019). Assessment of the start-up process of anaerobic digestion utilizing swine manure: 13 C fractionation of biogas and microbial dynamics. Environmental Science and Pollution Research, 26(13), 13275–13285. https://doi.org/10.1007/s11356-019-04703-3
Malliga, P., Bela, R. B., & Shanmugapriya, N. (2019). Conversion of textile effluent wastewater into fertiliser using marine cyanobacteria along with different agricultural waste. In N. K. Rathinam & R. K. Sani (Eds.), Biovaloriation of Waste, Renewable Chemicals and Biofuels. Elsevier. https://doi.org/10.1016/B978-0-12-817951-2.00005-5
Mukimin, A., Vistanty, H., Zen, N., Purwanto, A., & Wicaksono, K. A. (2018). Performance of bioequalization-electrocatalytic integrated method for pollutants removal of hand-drawn batik wastewater. Journal of Water Process Engineering, 21, 77–83. https://doi.org/10.1016/j.jwpe.2017.12.004
Nagarajan, D., Lee, D. J., & Chang, J. S. (2019). Integration of anaerobic digestion and microalgal cultivation for digestate bioremediation and biogas upgrading. Bioresource Technology, 121804, 1–18. https://doi.org/10.1016/j.biortech.2019.121804
Natalina, & Firdaus, H. (2017). Penurunan kadar kromiun heksavalen (Cr6+) dalam limbah batik menggunakan limbah udah (kitosan). Jurnal Teknik, 38(2), 99–102. https://doi.org/10.14710/teknik.v38i2.13403
Nurainun, Heiyana, & Rasyimah. (2008). Analisis industri batik di Indonesia. Jurnal Fokus Ekonomi, 7(3), 124–135.
Nurdalia, I. (2006). Kajian dan analisis peluang penerapan produksi bersih pada usaha kecil batik cap (Studi kasus pada tiga usaha industri kecil batik cap di Pekalongan). Universitas Diponegoro, Semarang.
Nurroisah, E., Indarjo, S., & Wahyuningsih, A. S. (2014). Keefektifan aerasi sistem tray dan filtrasi sebagai penurun chemical oxygen demand dan padatan tersuspensi pada limbah cair batik. Unnes Journal of Public Health, 3(4), 56–64.
Pivato, A., Vanin, S., Raga, R., Lavagnolo, M. C., Barausse, A., Rieple, A., Laurent, A., & Cossu, R. (2016). Use of digestate from a decentralized on-farm biogas plant as fertilizer in soils: An ecotoxicological study for future indicators in risk and life cycle assessment. Waste Management, 49, 378–389. https://doi.org/10.1016/j.wasman.2015.12.009
Praveen, P., Guo, Y., Kang, H., Lefebvre, C., & Loh, K. C. (2018). Enhancing microalgae cultivation in anaerobic digestate through nitrification. Chemical Engineering Journal, 354, 905–912. https://doi.org/10.1016/j.cej.2018.08.099
Pusat Data Lingkungan. (2014). Peraturan Gubernur Jawa Timur Nomor 72 Tahun 2013 tentang Baku Mutu Air Limbah Bagi Industri dan/atau Kegiatan Usaha Lainnya. www.pusdaling.jatimprov.go.id.
Putra, H. P., Andrio, D., & Elystia, S. (2016). Pengaruh rasio pencampuran limbah cair tahu dan kotoran sapi terhadap proses anaerob. Jurnal Online Mahasiswa Fakultas Teknik Universitas Riau, 3(2), 1–5.
Riyanto, & Puspitasari, E. (2018). Treatment of wastewater batik by electrochemical coagulation using aluminium (Al) electrodes. IOP Conf. Series: Materials Science and Engineering, 299, 012081.
Safauldeen, S. H., Hasan, H. A., & Abdullah, S. R. S. (2019). Phytoremediation efficiency of water hyacinth for batik textile effluent treatment. Journal of Ecological Engineering, 20(9), 177–187. 10.12911/22998993/112492
Saraswati, Y. W., Haeruddin, & Purwann, F. (2014). Sebaran spasial dan temporal fenol, kromium dan minyak di sekitar sentra industri batik Kabupaten Pekalongan. Diponegoro Journal of Maquares, 3(1), 186–192.
Senthilkumar, M., Gnanapragasam, G., Arutchelvan, V., & Nagarajan, S. (2011). Treatment of textile dyeing wastewater using two-phase pilot plant UASB reactor with sago wastewater as co-substrate. Chemical Engineering Journal, 166(1), 10–14. https://doi.org/10.1016/j.cej.2010.07.057
Sianita, D., & Nurchayati, I. S. (2009). Kajian pengolahan limbah Cair industri batik kombinasi aerob-anaerob dan penggunaan koagulan tawas. Universitas Diponegoro, Semarang.
Sinha, R. K., Bharambe, G., & Bapat, P. (2007). Removal of high BOD and COD loadings of primary liquid waste products from dairy industry by vermi-filtration technology using earthworms. Indian Journal of Environmental Protection, 27(6), 486–501.
Suhartini, S. (2014). The Anaerobic Digestion of Sugar Beet Pulp. University of Southampton.
Suhartini, S., Lestari, Y. P., & Nurika, I. (2019a). Estimation of methane and electricity potential from canteen food waste. IOP Conf. Series: Earth and Environmental Science, 230, 1–6. https://doi.org/10.1088/1755-1315/230/1/012075
Suhartini, S., Heaven, S., Zhang, Y., & Banks, C. J. (2019b). Antifoam, dilution and trace element addition as foaming control strategies in mesophilic anaerobic digestion of sugar beet pulp. International Biodeterioration and Biodegradation, 145(104812), 1–13. https://doi.org/10.1016/j.ibiod.2019.104812
Suhartini, S., Pangestuti, M. B., & Hidayat, N. (2019c). Textile wastewater treatment: biodegradability on aerobic and anaerobic process. IOP Conf. Series: Earth and Environmental Science, 230, 1–6. https://doi.org/10.1088/1755-1315/230/1/012091
Sumarko, H. T., Lestari, S., & Dewi, R. S. (2013). Deodorisasi limbah cair batik menggunakan limbah baglog Plerotus ostreatus dengan kombinasi volume dan waktu inkubasi berbeda. Molekul, 8(2), 151–166.
Suprihatin, H. (2014). Kandungan Organik Limbah Cair Industri Batik Jetis Sidoarjo dan Alternatif Pengolahannya.
Susilo, B., Damayanti, R., & Izza, N. (2017). Teknik Bioenergi. UB Press.
Sutisna, Wibowo, E., Rokhmat, M., Rahman, D. Y., Murniati, R., Khairurrijal, & Abdullah, M. (2017). Batik wastewater treatment using TiO2 nanoparticles coated on the surface of plastic sheet. Procedia Engineering, 170, 78–83. https://doi.org/10.1016/j.proeng.2017.03.015
Swati, S. S., & Faruqui, A. N. (2018). Investigation on ecological parameters and COD minimazation of textile effluent generated after dyeing with mono and bi-functional reactive dyes. Journal Environmental Technology and Innovation, 11(2018), 165–173. https://doi.org/10.1016/j.eti.2018.06.003
Syafila, M., Setiadi, T., Mulyadi, A. H., & Esmiralda. (2007). Kajian biodegradasi limbah cair industri biodesel pada kondisi anaerob dan aerob. Journal of Mathematical and Fundamental Sciences, 39(1–2), 165–178. http://dx.doi.org/10.5614/itbj.sci.2007.39.1-2.9
Utami, I., Redjeki, S., & Astuti, D. H. (2016). Biogas production and removal COD-BOD and TSS from wastewater industrial alcohol (vinasse) by modified UASB bioreactor. MATEC Web of Conferences, 58(01005), 1–5. https://doi.org/10.1051/matecconf/20165801005
Wijaya, I. P. K., Lestari, W., Ariyanti, N., Pandu, J., Saifuddin, F., Utama, W., & Bahri, A. S. (2018). Studi kelayakan perangkap CO2 berdasarkan analisa fisik sedimen (Studi kasus: formasi kabuh, Cekungan Jawa Timur Utara). IPTEK Journal of Proceedings Series, 2(2018), 227–231. http://dx.doi.org/10.12962/j23546026.y2018i1.3386
Wu, J. Y., Lay, C. H., Chen, C. C., & Wu, S. Y. (2017). Lipid accumulating microalgae cultivation in textile wastewater: Environmental parameters optimization. Journal of the Taiwan Institute of Chemical Engineers, 79, 1–6. https://doi.org/10.1016/j.jtice.2017.02.017
Yakoob, M. A., Radin, R. M. S., Al-Gheethi, A. A. S., & Kassim, A. H. M. (2018). Characteristics of chicken slaughterhouse wastewater. Chemical Engineering Transaction, 63(2018), 637–642. https://doi.org/10.3303/CET1863107
DOI: https://doi.org/10.22146/agritech.54099
Article Metrics
Abstract views : 6955 | views : 10259Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Nur Hidayat, Martasari Beti Pangestuti, Reny Nurul Utami, Sri Suhartini
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
agriTECH has been Indexed by:
agriTECH (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.