Physicochemical Characteristics of Sun-dried and Roasted Cassava Rice

https://doi.org/10.22146/agritech.37657

Rudiati Evi Masithoh(1*), Maynanda Brigita Chrysta(2), Sabila Avinda Deviana(3)

(1) Department of Agricultural and Biosystems Engineering, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No. 1, Bulaksumur, Yogyakarta
(2) Department of Agricultural and Biosystems Engineering, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No. 1, Bulaksumur, Yogyakarta
(3) Department of Agricultural and Biosystems Engineering, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No. 1, Bulaksumur, Yogyakarta
(*) Corresponding Author

Abstract


High demand of rice can be minimized by promoting cassava as an alternative carbohydrate source. One method to process cassava to ease consumption and to prolong its shelf-life is by making it into analog rice, namely cassava rice. Two drying methods were studied to obtain the physicochemical information of cassava rice. This research aimed at determining color and chemical properties, i.e. water content, ash, lipid, protein, carbohydrate, starch, amylose, amylopectin, and mineral contents of cassava rice processed by roasting and sun-drying. It also compared physicochemical characteristics of cassava rice and paddy rice to get better understanding of nutritional values of cassava rice. Results showed that physical, chemical, and mineral contents of cassava rice were different from paddy rice. Cassava rice had lower water, protein, Zn and P2O5 contents than paddy rice. Roasted cassava rice was darker than cassava rice. Sun-dried and roasted cassava rice showed no different values in terms of lipid, carbohydrate, starch, amylose, amylopectin, Mg, Zn and P2O5 contents, while other characteristics were similar.


Keywords


Cassava rice; physical and chemical characteristics; roasted; sun-dried

Full Text:

PDF


References

Ambein, F. E. L. (2002). Food Safety and Amino Acid Balance in Processed Cassava “ Cossettes ", pp. 3042–3049. doi: 10.1021/jf011441k.

Aryee, F. N. A., Oduro, I., Ellis, W.O. and Afuakwa, J.J. (2006). The physicochemical properties of flour samples from the roots of 31 varieties of cassava’, Food Control, 17(11), pp. 916–922. doi: 10.1016/j.foodcont.2005.06.013.

Eleazu, C. O. and Eleazu, K. C. (2012). Determination of the proximate composition, total carotenoid, reducing sugars and residual cyanida level of flours of 6 new yellow and white cassava varieties, American Journal of Food Technology, pp. 1–8. doi: 10.3923/ajft.2012.

Haryadi (2011). Teknologi modifikasi tepung kasava, Agritech, 31(2), pp. 86–92. doi: 10.22146/agritech.9730

Horwitz, W. and Latimer, G. W. (2005). Official Methods of Analysis of AOAC International. AOAC International, Maryland.

Montagnac, J. A., Davis, C. R. and Tanumihardjo, S. A. (2009). Nutritional value of cassava for use as a staple food and recent advances for improvement, Comprehensive Reviews in Food Science and Food Safety, 8(3), pp. 181–194. doi: 10.1111/j.1541-4337.2009.00077.x.

Sabarella, Komalasari, W. B., Wahyuningsih, S., Manurung, M., Herwulan, M. N., Sehusman dan Supriati, Y. (2016). Buletin konsumsi pangan (Bulletin of food consumption). Available at: http://pusdatin.setjen.pertanian.go.id/.

Sánchez, T., Ceballos, H., Dufour, D., Ortiz, D., Morant, N., Calle, F., Felde, T.Z., Domínguez, M. and Davrieux, F. (2014). Prediction of carotenoids, cyanide and dry matter contents in fresh cassava root using NIRS and Hunter color techniques, Food Chemistry, 151, pp. 444–451. doi: 10.1016/j.foodchem.2013.11.081.

Suarni and Widowati, S. (2007). Struktur, Komposisi, dan Nutrisi Jagung, Puslitbang Tanaman Pangan, pp. 410–426.

Subdirektorat Publikasi dan Kompilasi Statistik (2019). Laporan Bulanan Data Sosial Ekonomi. Available at: http://www.bps.go.id.

Syafutri, M. I., Pratama, F., Syaiful, F. and Faizal, A. (2016). Effects of Varieties and Cooking Methods on Physical and Chemical Characteristics of Cooked Rice, Rice Science, 23(5), pp. 282–286. doi: 10.1016/j.rsci.2016.08.006.

Syahariza, Z.A., Sar, S., Hasjim, J., Tizzotti, M.J. and Gilbert, R.G. (2013). The importance of amylose and amylopectin fine structures for starch digestibility in cooked rice grains, Food Chemistry. Elsevier Ltd, 136(2), pp. 742–749. doi: 10.1016/j.foodchem.2012.08.053.

Tester, R. F. and Morrison, W. R. (1990). Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids’, Cereal Chemistry, 67(6), pp. 551–557.

Widaningsih, R., Nuryati, L., Waryanto, B. and Akbar. (2016) Outlook Komoditas Ubi Kayu Tahun 2016. Available at: http://epublikasi.setjen.pertanian.go.id/arsip-outlook/81-outlook-tanaman-pangan/429-outlook-ubikayu-2016

Zuraida, N. and Supriati, Y. (2001). Usahatani Ubi Jalar sebagai Bahan Pangan Alternatif dan Diversifikasi Sumber Karbohidrat, Buletin AgroBio, 4(1), pp. 13–23.



DOI: https://doi.org/10.22146/agritech.37657

Article Metrics

Abstract views : 2376 | views : 2200

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Rudiati Evi Masithoh, Maynanda Brigita Chrysta, Sabila Avinda Deviana

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

agriTECH has been Indexed by:


agriTECH (print ISSN 0216-0455; online ISSN 2527-3825) is published by Faculty of Agricultural Technology, Universitas Gadjah Mada in colaboration with Indonesian Association of Food Technologies.


website statisticsView My Stats