Penggunaan Surfaktan pada Sistem Dispersi Padat Terner: Manfaat dan Risiko

https://doi.org/10.22146/farmaseutik.v19i4.86720

Muhammad Seftian(1), Marlyn Dian Laksitorini(2), Teuku Nanda Saifullah Sulaiman(3*)

(1) Magister Ilmu Farmasi, Universitas Gadjah Mada, Jl. Sekip Utara, Sleman, Yogyakarta 55281, Indonesia
(2) Departemen Farmasetika, Universitas Gadjah Mada, Jl. Sekip Utara, Sleman, Yogyakarta 5528, Indonesia
(3) Departemen Farmasetika, Universitas Gadjah Mada, Jl. Sekip Utara, Sleman, Yogyakarta 5528, Indonesia
(*) Corresponding Author

Abstract


Beberapa decade terakhir, kelarutan menjadi tantangan besar dalam pengembangan obat. Diperkirakan lebih dari 90% kandidat obat baru memiliki kelarutan dalam air yang kurang baik. Berbagai inovasi teknologi telah diaplikasikan guna meningkatkan kelarutan obat dalam air, salah satunya dispersi padat. Seiring berkembangnya teknologi, dispersi padat generasi baru menambahkan surfaktan sebagai sistem terner. Penelitian sebelumnya mengungkapkan peningkatan kecepatan disolusi pada sistem terner obat-polimer-surfaktan terjadi lebih tinggi dibandingkan dengan dispersi padat tanpa surfaktan. Akan tetapi penelitian lain juga mengungkapan efek negatif dari surfaktan terhadap stabilitas sistem dispersi padat. Review ini mendiskusikan penggunaan surfaktan sebagai sistem terner dispersi padat. Salah satu tantangan pengembangan sistem dispersi padat adalah drug loading yang terbatas dan adanya rekristalisasi selama proses disolusi. Surfaktan mencegah kristalisasi obat selama proses disolusi melalui efek solubilisasi dengan cara mendispersikan molekul obat dalam bentuk nanodroplet. Di sisi lain, beberapa penelitian lain mengungkapkan hasil yang kontradiktif yang menyatakan surfaktan justru mempercepat nukleasi dan memberikan efek negatif terhadap stabilitas sistem dispersi padat. Efek surfaktan pada sistem dispersi padat akan tergantung pada struktur, afinitas interaksi, dan konsentrasi yang digunakan. Seleksi surfaktan yang kompatibel dengan sistem yang dikembangkan perlu dilakukan karena pada titik tertentu surfaktan dapat menjadi kompetitor yang menekan interaksi obat-polimer dan memicu kristalisasi

Keywords


surfaktan; dispersi padat; kelarutan; disolusi; stabilitas

Full Text:

PDF


References

Abbot, V., Bhardwaj, V., & Sharma, P. (2021). Investigation of intermolecular interactions of anionic surfactant SDS and rutin: A physico-chemical approach for pharmaceutical application. Journal of Molecular Liquids, 337. https://doi.org/10.1016/j.molliq.2021.116352

Aguiar, G. P. S., Arcari, B. D., Chaves, L. M. P. C., Magro, C. D., Boschetto, D. L., Piato, A. L., Lanza, M., & Oliveira, J. V. (2018). Micronization of trans-resveratrol by supercritical fluid: Dissolution, solubility and in vitro antioxidant activity. Industrial Crops and Products, 112(April 2017), 1–5. https://doi.org/10.1016/j.indcrop.2017.11.008

Antraygues, K., Maingot, M., Schellhorn, B., Trebosc, V., Gitzinger, M., Deprez, B., Defert, O., Dale, G. E., Bourotte, M., Lociuro, S., & Willand, N. (2022). Design and synthesis of water-soluble prodrugs of rifabutin for intraveneous administration. European Journal of Medicinal Chemistry, 238(May). https://doi.org/10.1016/j.ejmech.2022.114515

Baghel, S., Cathcart, H., & O’Reilly, N. J. (2016). Polymeric Amorphous Solid Dispersions: A Review of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs. Journal of Pharmaceutical Sciences, 105(9), 2527–2544. https://doi.org/10.1016/j.xphs.2015.10.008

Bhanderi, A., Bari, F., & Al-Obaidi, H. (2021). Evaluation of the impact of surfactants on miscibility of griseofulvin in spray dried amorphous solid dispersions. Journal of Drug Delivery Science and Technology, 64(February). https://doi.org/10.1016/j.jddst.2021.102606

Browne, E., Charifou, R., Worku, Z. A., Babu, R. P., & Healy, A. M. (2019). Amorphous solid dispersions of ketoprofen and poly-vinyl polymers prepared via electrospraying and spray drying: A comparison of particle characteristics and performance. International Journal of Pharmaceutics, 566(May), 173–184. https://doi.org/10.1016/j.ijpharm.2019.05.062

Butreddy, A. (2022). Hydroxypropyl methylcellulose acetate succinate as an exceptional polymer for amorphous solid dispersion formulations: A review from bench to clinic. European Journal of Pharmaceutics and Biopharmaceutics, 177(July), 289–307. https://doi.org/10.1016/j.ejpb.2022.07.010

Chen, J., Ormes, J. D., Higgins, J. D., & Taylor, L. S. (2015). Impact of surfactants on the crystallization of aqueous suspensions of celecoxib amorphous solid dispersion spray dried particles. Molecular Pharmaceutics, 12(2), 533–541. https://doi.org/10.1021/mp5006245

Chen, S., Hanning, S., Falconer, J., Locke, M., & Wen, J. (2019). Recent advances in non-ionic surfactant vesicles ( niosomes ): Fabrication , characterization , pharmaceutical and cosmetic applications. 144(May), 18–39.

Chen, Y., Wang, S., Wang, S., Liu, C., Su, C., Hageman, M., Hussain, M., Haskell, R., Stefanski, K., & Qian, F. (2016). Sodium Lauryl Sulfate Competitively Interacts with HPMC-AS and Consequently Reduces Oral Bioavailability of Posaconazole/HPMC-AS Amorphous Solid Dispersion. Molecular Pharmaceutics, 13(8), 2787–2795. https://doi.org/10.1021/acs.molpharmaceut.6b00391

Correa-Soto, C. E., Gao, Y., Indulkar, A. S., Zhang, G. G. Z., & Taylor, L. S. (2022). Role of surfactants in improving release from higher drug loading amorphous solid dispersions. International Journal of Pharmaceutics, 625(May). https://doi.org/10.1016/j.ijpharm.2022.122120

Dave, R. H., Patel, A. D., Donahue, E., & Patel, H. H. (2012). To evaluate the effect of addition of an anionic surfactant on solid dispersion using model drug indomethacin. Drug Development and Industrial Pharmacy, 38(8), 930–939. https://doi.org/10.3109/03639045.2011.633264

Davis, M. T., Potter, C. B., Mohammadpour, M., Albadarin, A. B., & Walker, G. M. (2017). Design of spray dried ternary solid dispersions comprising itraconazole, soluplus and HPMCP: Effect of constituent compositions. International Journal of Pharmaceutics, 519(1–2), 365–372. https://doi.org/10.1016/j.ijpharm.2017.01.043

De Mohac, L. M., Raimi-Abraham, B., Caruana, R., Gaetano, G., & Licciardi, M. (2020). Multicomponent solid dispersion a new generation of solid dispersion produced by spray-drying. Journal of Drug Delivery Science and Technology, 57(April). https://doi.org/10.1016/j.jddst.2020.101750

Djuris, J., Milovanovic, S., Medarevic, D., Dobricic, V., Dapčević, A., & Ibric, S. (2019). Selection of the suitable polymer for supercritical fluid assisted preparation of carvedilol solid dispersions. International Journal of Pharmaceutics, 554(July 2018), 190–200. https://doi.org/10.1016/j.ijpharm.2018.11.015

Ekdahl, A., Mudie, D., Malewski, D., Amidon, G., & Goodwin, A. (2019). Effect of Spray-Dried Particle Morphology on Mechanical and Flow Properties of Felodipine in PVP VA Amorphous Solid Dispersions. Journal of Pharmaceutical Sciences, 108(11), 3657–3666. https://doi.org/10.1016/j.xphs.2019.08.008

Gao, L., & Zhang, X. R. (2022). Pharmaceutical salt hydrates of vortioxetine with maleic acid and fumaric acid: Crystal structures, characterisation and solubility performance. Journal of Molecular Structure, 1250, 1–10. https://doi.org/10.1016/j.molstruc.2021.131847

Guan, J., Jin, L., Liu, Q., Xu, H., Wu, H., Zhang, X., & Mao, S. (2019a). Exploration of supersaturable lacidipine ternary amorphous solid dispersion for enhanced dissolution and in vivo absorption. European Journal of Pharmaceutical Sciences, 139(June). https://doi.org/10.1016/j.ejps.2019.105043

Guan, J., Jin, L., Liu, Q., Xu, H., Wu, H., Zhang, X., & Mao, S. (2019b). Exploration of supersaturable lacidipine ternary amorphous solid dispersion for enhanced dissolution and in vivo absorption. European Journal of Pharmaceutical Sciences, 139(April). https://doi.org/10.1016/j.ejps.2019.105043

Guan, Q., Ma, Q., Zhao, Y., Jiang, X., Zhang, H., Liu, M., Wang, Z., & Han, J. (2021). Cellulose derivatives as effective recrystallization inhibitor for ternary ritonavir solid dispersions: In vitro-in vivo evaluation. Carbohydrate Polymers, 273(August). https://doi.org/10.1016/j.carbpol.2021.118562

Hao, L. S., Wang, H. X., Wang, Y. S., Meng, Y. Q., & Nan, Y. Q. (2023). Inclusion complexation of surfactant with β-cyclodextrin and its effect on the mixed micellization of cationic/anionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 668(April). https://doi.org/10.1016/j.colsurfa.2023.131437

Haser, A., Cao, T., J, L., Listro, T., Acquarulo, L., & Zhang, F. (2017). Melt Extrusion vs. Spray Drying: The Effect of Processing Methods on Crystalline Content of Naproxen-Povidone Formulations. European Journal of Pharmaceutical Sciences, 102(115–125).

Indulkar, A. S., Lou, X., Zhang, G. G. Z., & Taylor, L. S. (2019). Insights into the Dissolution Mechanism of Ritonavir-Copovidone Amorphous Solid Dispersions: Importance of Congruent Release for Enhanced Performance. Molecular Pharmaceutics, 16(3), 1327–1339. https://doi.org/10.1021/acs.molpharmaceut.8b01261

JH Collett. (2005). Poloxamer. In Handbook of Pharmaceutical Excipient (pp. 506–509).

Kim, D. H., Kim, Y. W., Tin, Y. Y., Soe, M. T. P., Ko, B. H., Park, S. J., & Lee, J. W. (2021). Recent technologies for amorphization of poorly water-soluble drugs. Pharmaceutics, 13(8). https://doi.org/10.3390/pharmaceutics13081318

Lang, B., McGinity, J. W., & Williams, R. O. (2014). Dissolution enhancement of itraconazole by hot-melt extrusion alone and the combination of hot-melt extrusion and rapid freezing-effect of formulation and processing variables. Molecular Pharmaceutics, 11(1), 186–196. https://doi.org/10.1021/mp4003706

Lechuga, M., Avila-Sierra, A., Lobato-Guarnido, I., García-López, A. I., Ríos, F., & Fernández-Serrano, M. (2023). Mitigating the skin irritation potential of mixtures of anionic and non-ionic surfactants by incorporating low-toxicity silica nanoparticles. Journal of Molecular Liquids, 383(April). https://doi.org/10.1016/j.molliq.2023.122021

Liu, C., Chen, Z., Chen, Y., Lu, J., Li, Y., Wang, S., Wu, G., & Qian, F. (2016). Improving Oral Bioavailability of Sorafenib by Optimizing the “spring” and “parachute” Based on Molecular Interaction Mechanisms. Molecular Pharmaceutics, 13(2), 599–608. https://doi.org/10.1021/acs.molpharmaceut.5b00837

Lu, S., Dong, J., & Li, X. (2023). Gradual transformation of anionic/zwitterionic wormlike micelles from viscous to elastic domains: Unravelling the effect of anionic surfactant chain length. Journal of Colloid and Interface Science, 641, 319–328. https://doi.org/10.1016/j.jcis.2023.03.053

Lu, Y., Chen, J., Yi, S., & Xiong, S. (2019). Enhanced felodipine dissolution from high drug loading amorphous solid dispersions with PVP/VA and sodium dodecyl sulfate. Journal of Drug Delivery Science and Technology, 53(April). https://doi.org/10.1016/j.jddst.2019.101151

Medarević, D., Cvijić, S., Dobričić, V., Mitrić, M., Djuriš, J., & Ibrić, S. (2018). Assessing the potential of solid dispersions to improve dissolution rate and bioavailability of valsartan: In vitro-in silico approach. European Journal of Pharmaceutical Sciences, 124(August), 188–198. https://doi.org/10.1016/j.ejps.2018.08.026

Muzzalupo, R., Pérez, L., Pinazo, A., & Tavano, L. (2017). Pharmaceutical versatility of cationic niosomes derived from amino acid-based surfactants: Skin penetration behavior and controlled drug release. International Journal of Pharmaceutics, 529(1–2), 245–252. https://doi.org/10.1016/j.ijpharm.2017.06.083

Nachari, Y., & Jabbari, M. (2021). A case study on the partitioning of pharmaceutical compound naproxen in edible oil-water system in the presence of ionic and non-ionic surfactants. Journal of the Taiwan Institute of Chemical Engineers, 119, 1–5. https://doi.org/10.1016/j.jtice.2021.02.012

Palekar, S., Mamidi, H. K., Guo, Y., Vartak, R., & Patel, K. (2023). Corroborating various material-sparing techniques with hot melt extrusion for the preparation of triclabendazole amorphous solid dispersions. International Journal of Pharmaceutics, 640(April). https://doi.org/10.1016/j.ijpharm.2023.122989

Pinto, J. M. O., Leão, A. F., Riekes, M. K., França, M. T., & Stulzer, H. K. (2018). HPMCAS as an effective precipitation inhibitor in amorphous solid dispersions of the poorly soluble drug candesartan cilexetil. Carbohydrate Polymers, 184(September 2017), 199–206. https://doi.org/10.1016/j.carbpol.2017.12.052

Que, C., Lou, X., Zemlyanov, D. Y., Mo, H., Indulkar, A. S., Gao, Y., Zhang, G. G. Z., & Taylor, L. S. (2019). Insights into the Dissolution Behavior of Ledipasvir-Copovidone Amorphous Solid Dispersions: Role of Drug Loading and Intermolecular Interactions. Molecular Pharmaceutics, 16(12), 5054–5067. https://doi.org/10.1021/acs.molpharmaceut.9b01025

Saha, S. K., Joshi, A., Singh, R., Jana, S., Dubey, K., Joshi, A., Singh, R., Jana, S., & Dubey, K. (2023). An investigation into solubility and dissolution improvement of Alectinib Hydrochloride as a third-generation amorphous solid dispersion. Journal of Drug Delivery Science and Technology, 1–8.

Song, C. K., Yoon, I.-S., & Kim, D.-D. (2016). Poloxamer-based solid dispersions for oral delivery of docetaxel: Differential effects of F68 and P85 on oral docetaxel bioavailability. International Journal of Pharmaceutics, 507, 102–108.

Surwase, S. A., Itkonen, L., Aaltonen, J., Saville, D., Rades, T., Peltonen, L., & Strachan, C. J. (2015). Polymer incorporation method affects the physical stability of amorphous indomethacin in aqueous suspension. European Journal of Pharmaceutics and Biopharmaceutics, 96(June), 32–43. https://doi.org/10.1016/j.ejpb.2015.06.005

Szafraniec-Szczęsny, J., Antosik-Rogóż, A., Kurek, M., Gawlak, K., Górska, A., Peralta, S., Knapik-Kowalczuk, J., Kramarczyk, D., Paluch, M., & Jachowicz, R. (2021). How does the addition of kollidon®va64 inhibit the recrystallization and improve ezetimibe dissolution from amorphous solid dispersions? Pharmaceutics, 13(2), 1–15. https://doi.org/10.3390/pharmaceutics13020147

Tian, Y., Jones, D. S., & Andrews, G. P. (2015). An investigation into the role of polymeric carriers on crystal growth within amorphous solid dispersion systems. Molecular Pharmaceutics, 12(4), 1180–1192. https://doi.org/10.1021/mp500702s

Valkama, E., Haluska, O., Lehto, V. P., Korhonen, O., & Pajula, K. (2021). Production and stability of amorphous solid dispersions produced by a Freeze-drying method from DMSO. International Journal of Pharmaceutics, 606(April). https://doi.org/10.1016/j.ijpharm.2021.120902

Vasconcelos, T., Prezotti, F., Araújo, F., Lopes, C., Loureiro, A., Marques, S., & Sarmento, B. (2021). Third-generation solid dispersion combining Soluplus and poloxamer 407 enhances the oral bioavailability of resveratrol. International Journal of Pharmaceutics, 595(November 2020). https://doi.org/10.1016/j.ijpharm.2021.120245

Xi, Z., Fei, Y., Wang, Y., Lin, Q., Ke, Q., Feng, G., & Xu, L. (2023). Solubility improvement of curcumin by crystallization inhibition from polymeric surfactants in amorphous solid dispersions. Journal of Drug Delivery Science and Technology. https://doi.org/10.1016/j.msec.2022.112712

Yang, R., Zhang, G. G. Z., Kjoller, K., Dillon, E., Purohit, H. S., & Taylor, L. S. (2022). Phase separation in surfactant-containing amorphous solid dispersions: Orthogonal analytical methods to probe the effects of surfactants on morphology and phase composition. International Journal of Pharmaceutics, 619(March). https://doi.org/10.1016/j.ijpharm.2022.121708

Yen, C.-W., Kuhn, R., Hu, C., Zhang, W., Chiang, P.-C., Chen, J. Z., Hau, J., Estevez, A., Nagapudi, K., & H.Leung, D. (2021). Impact of surfactant selection and incorporation on in situ nanoparticle formation from amorphous solid dispersions. International Journal of Pharmaceutics, 607.



DOI: https://doi.org/10.22146/farmaseutik.v19i4.86720

Article Metrics

Abstract views : 2345 | views : 2984

Refbacks



Majalah Farmaseutik Indexed by:

   
 
Creative Commons Licence
 
 
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.