Carbon composite of NiO hydrothermal impregnation from sugarcane bagasse and its electrochemical properties

https://doi.org/10.22146/jrekpros.88210

Al Nadine De Nasti(1), Kyfti Yolanda Siburian(2), Abraham Danofan Sembiring(3), Hans Kristianto(4), Ratna Frida Susanti(5), Haryo Satriya Oktaviano(6), Agung Nugroho(7*)

(1) Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pertamina
(2) Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pertamina
(3) Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pertamina
(4) Chemical Engineering Department, Industrial Technology Faculty, Parahyangan Catholic University
(5) Chemical Engineering Department, Industrial Technology Faculty, Parahyangan Catholic University
(6) Research and Technology Innovation, PT Pertamina (Persero)
(7) Universitas Pertamina
(*) Corresponding Author

Abstract


Sugarcane bagasse (SB) can synthesize activated carbon (AC) through a two-step calcination process at calcination at 400oC and activation at 800oC. NaOH 0.1 M is used to activate the pre-carbonized sample in the activation step. The AC samples undergo hydrothermal impregnation with nickel oxide (NiO) at 110°C. The X-ray diffraction (XRD) pattern and Energy dispersive X-ray spectroscopy (EDX) confirmed the presence of NiO after this process. Scanning Electron Microscope (SEM) indicates the presence of pore structures in the sample morphology. A three-electrode system with 1 M Na2SO4 as an electrolyte was employed to assess the electrochemical properties. The specific capacitance for activated carbon derived from SB stands at 89.53 F/g at 0.05 A/g current density, while after impregnation with NiO, it increases to 250.53 F/g at the same current density. The results demonstrate the possibility of activated carbon from sugarcane bagasse waste composited with NiO as supercapacitor electrodes.


Keywords


activated carbon; galvanostatic charge-discharge; hydrothermal; nickel oxide; sugarcane bagasse

Full Text:

PDF


References

Adinaveen T, Kennedy L, Vijaya JJ, Sekaran G. 2013. Studies on structural, morphological, electrical and electrochemical properties of activated carbon prepared from sugarcane bagasse. Journal of Industrial and Engineering Chemistry. 19:1470–1476. doi:10.1016/j.jiec.2013.01.010.

Andreas H, Conway B. 2006. Examination of the double-layer capacitance of an high specific-area C-cloth electrode as titrated from acidic to alkaline pHs. Electrochimica Acta. 51(28):6510–6520. doi:10.1016/j.electacta.2006.04.045.

Askaputra A, Yuliansyah AT. 2020. Pengaruh variasi suhu hidrotermal dan aktivator kalium hidroksida (KOH) terhadap kemampuan hydrochar sebagai adsorben pada proses adsorpsi limbah cair metilen biru. Jurnal Rekayasa Proses; Vol 14, No 2 (2020). doi:10.22146/jrekpros.57394.

Chindaprasirt P, Rattanasak U. 2020. Eco-production of silica from sugarcane bagasse ash for use as a photochromic pigment filler. Scientific Reports. 10(1):9890. doi:10.1038/ s41598-020-66885-y.

Danish M, Ahmad T, Hashim R, Said N, Akhtar MN, MohamadSaleh J, Sulaiman O. 2018. Comparison of surface properties of wood biomass activated carbons and their application against rhodamine B and methylene blue dye. Surfaces and Interfaces. 11:1–13. doi:10.1016/J.SURFIN.2018. 02.001.

Dwiyaniti M, Elang Barruna A, Muhamad Naufal R, Subiyanto I, Setiabudy R, Hudaya C. 2020. Extremely high surface area of activated carbon originated from sugarcane bagasse. IOP Conference Series: Materials Science and Engineering. 909(1):012018. doi:10.1088/1757-899X/909/ 1/012018.

Fan L, Tang L, Gong H, Yao Z, Guo R. 2012. Carbonnanoparticles encapsulated in hollow nickel oxides for supercapacitor application. Journal of Materials Chemistry. 22(32):16376–16381. doi:10.1039/C2JM32241B.

Ge C, Hou Z, He B, Zeng F, Cao J, Liu Y, Kuang Y. 2012. Three-dimensional flower-like nickel oxide supported on graphene sheets as electrode material for supercapacitors. Journal of Sol-Gel Science and Technology. 63(1):146–152. doi:10.1007/s10971-012-2778-7.

Haraki RE, Arie AA, Susanti RF, Oktaviano HS, Nugroho A. 2023. Synthesis and electrochemical properties of ZnO/ activated carbon from vetiver distillation waste. Engineering Chemistry. 2(1):35–41. doi:10.4028/p-1z7h01.

Hassan A, Youssef A. 2014. Preparation and characterization of microporous NaOH-activated carbons from hydrofluoric acid leached rice husk and its application for lead(II) adsorption. Carbon letters. 15(1):57–66. doi:10.5714/CL.2 014.15.1.057.

Hou L, Zhou H, Zhai HJ. 2021. Cycling stability depends closely on scan rate: the case of polyaniline supercapacitor electrodes. Soft Materials. 19(4):452–456. doi:10.1080/1539445X.2020.1856872.

Javed MS, Chen J, Chen L, Xi Y, Zhang C, Wan B, Hu C. 2016. Flexible full-solid state supercapacitors based on zinc sulfide spheres growing on carbon textile with superior charge storage. Journal of Materials Chemistry A. 4(2):667–674. doi:10.1039/C5TA08752J.

Karuppaiah M, Sakthivel P, Asaithambi S, Murugan R, Babu GA, Yuvakkumar R, Ravi G. 2019. Solvent dependent morphological modification of micro-nano assembled Mn2O3/NiO composites for high performance supercapacitor applications. Ceramics International. 45(4):4298–4307. doi:https://doi.org/10.1016/j.cerami nt.2018.11.104.

Khotseng L, Seroka N, Taziwa R. 2022. Extraction and Synthesis of Silicon nanoparticles (SiNPs) by conventional acid precipitation methods from industrial agro-waste: A mini-review. Applied Sciences. 12(5):2310. doi:10.339 0/app12052310.

Li Y, Huang K, Liu S, Yao Z, Zhuang S. 2011. Mesomacroporous Co3O4 electrode prepared by polystyrene spheres and carbowax templates for supercapacitors. Journal of Solid State Electrochemistry. 15(3):587–592. do i:10.1007/s10008-010-1128-3.

Nugroho A, Erviansyah F, Floresyona D, Mahalingam S, Manap A, Afandi N, Lau KS, Chia CH. 2022a. Synthesisand characterization NS-reduced graphene oxide hydrogel and its electrochemical properties. Letters on Materials. 12(2):169–174. doi:10.22226/2410-3535-2022-2-169-174.

Nugroho A, Nursanto EB, Pradanawati SA, Oktaviano HS, Nilasary H, Nursukatmo H. 2021. Fe based catalysts for petroleumcokegraphitizationfor Lithium Ionbattery ap plication. Materials Letters. 303:130557. doi:10.1016/j.ma tlet.2021.130557.

Nugroho A, Wahyudhi A, Oktaviano HS, Yudianti R, Hardiansyah A, Destyorini F, Irmawati Y. 2022b. Effect of iron loading on controlling Fe/N−C electrocatalyst structure for oxygen Reduction reaction. ChemistrySelect. 7(45):e202202042. doi:https://doi.org/10.1002/slct.202 202042.

Oh SH, Nazar LF. 2010. Direct synthesis of electroactive mesoporous hydrous crystalline RuO2 templated by a cationic surfactant. Journal of Materials Chemistry. 20(19):3834– 3839. doi:10.1039/B926734D.

Owusu KA, Qu L, Li J, Wang Z, Zhao K, Yang C, Hercule KM, Lin C, Shi C, Wei Q, Zhou L, Mai L. 2017. Lowcrystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nature Communications. 8(1):14264. doi:10.1038/ncomms14264.

Pradiprao Khedulkar A, Dien Dang V, Pandit B, Ai Ngoc Bui T, Linh Tran H, Doong Ra. 2022. Flower-like nickel hydroxide@tea leaf-derived biochar composite for highperformance supercapacitor application. Journal of Colloid and Interface Science. 623:845–855. doi:10.1016/j.jc is.2022.04.178.

Prasad R, Shivay YS. 2018. Sulphur in soil, plant and human nutrition. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. Volume 88. p. 429–434. doi:10.1007/s40011-016-0769-0.

Rahdar A, Aliahmad M, Azizi Y. 2015. NiO nanoparticles: Synthesis and characterization. Journal of Nanostructures. 5(2):145–151. doi:10.7508/jns.2015.02.009.

Ramos M, Del Angel E, Rojo J, Pacheco Catalán D, Castro M, Mora-Ortiz R. 2021. Activated carbons from coconut shell and NiO-based composites for energy storage systems. Journal of Materials Science: Materials in Electronics. 32:4872–4884. doi:10.1007/s10854-020-05227-0.

Sannasi V, Subbian K. 2020. Influence of Moringa oleifera gum on two polymorphs synthesis of MnO2 and evaluation of the pseudo-capacitance activity. Journal of Materials Science: Materials in Electronics. 31(19):17120–17132. doi:10.1007/s10854-020-04272-z.

Shao Y, El-Kady MF, Sun J, Li Y, Zhang Q, Zhu M, Wang H, Dunn B, Kaner RB. 2018. Design and mechanisms of asymmetric supercapacitors. Chemical Reviews. 118(18):9233–9280. doi:10.1021/acs.chemrev.8b00252.

Sun J, Sun X, Zhao H, Sun R. 2004. Isolation and characterization of cellulose from sugarcanebagasse. Polymer Degradation and Stability. 84(2):331–339. doi:10.1016/j.polymdegradstab.2004.02.008.

Wang G, Lu Z, Li Y, Li L, Ji H, Feteira A, Zhou D, Wang D, Zhang S, Reaney IM. 2021. Electroceramics for high-energy density capacitors: Current status and future perspectives. Chemical Reviews. 121(10):6124–6172. doi:10.1021/acs.ch emrev.0c01264.

Xiong S, He Y, Zhang X, Wu B, Chu J, Wang X, Zhang R, Gong M, Li Z, Chen Z. 2021. Hydrothermal synthesis of high specific capacitance electrode material using porous bagasse biomass carbon hosting MnO2 nanospheres. Biomass Conversion and Biorefinery. 11(4):1325–1334. do i:10.1007/s13399-019-00525-y.

Xu MW, Zhao DD, Bao SJ, Li HL. 2007. Mesoporous amorphous MnO2 as electrode material for supercapacitor. Journal of Solid State Electrochemistry. 11(8):1101–1107. doi:10.1 007/s10008-006-0246-4.

Zhang L, Zhao XS. 2009. Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews. 38(9):2520–2531. doi:10.1039/b813846j.



DOI: https://doi.org/10.22146/jrekpros.88210

Article Metrics

Abstract views : 769 | views : 346

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 The authors

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.