Isolasi mikroalga Aurantiochytrium dari Raja Ampat dan potensinya pada industri bahan baku adjuvant vaksin

https://doi.org/10.22146/jrekpros.72045

Suhendra Suhendra(1*), Lia Septianingsih(2), Tifanny Rizka Ariandi(3), Maratul Husna(4), Zen Adi Laksana(5), Dewi Yuniasih(6), Andri Hutari(7)

(1) Program Studi Teknik Kimia, Fakultas Teknologi Industri, Universitas Ahmad Dahlan Kampus IV, Jl. Ringroad Selatan, Tamanan, Banguntapan, Bantul, D.I Yogyakarta 55164
(2) Program Studi Teknik Kimia, Fakultas Teknologi Industri, Universitas Ahmad Dahlan Kampus IV, Jl. Ringroad Selatan, Tamanan, Banguntapan, Bantul, D.I Yogyakarta 55164
(3) Program Studi Teknik Kimia, Fakultas Teknologi Industri, Universitas Ahmad Dahlan Kampus IV, Jl. Ringroad Selatan, Tamanan, Banguntapan, Bantul, D.I Yogyakarta 55164
(4) Chemical Engineering Department, Kocaeli University, Kabaoğlu, Baki Komsuoğlu bulvarı No:515, Umuttepe, 41001 İzmit/Kocaeli, Turkey, 41000
(5) Departemen Teknik Kimia, Universitas Gadjah Mada, Jl. Grafika No.2, Kampus UGM, Yogyakarta, 55281, Indonesia
(6) Fakultas Kedokteran, Universitas Ahmad Dahlan Kampus IV, Jl. Ringroad Selatan, Tamanan, Banguntapan, Bantul, D.I Yogyakarta 55164
(7) Pendidikan Biologi, Fakultas Pendidikan Universitas Muhammadiah Prof. Dr. HAMKA, Jl. Limau II No.2, Kramat Pela, Kec. Kby. Baru, Kota Jakarta Selatan, DKI Jakarta 12130
(*) Corresponding Author

Abstract


Tulisan ini bertujuan memberikan kontribusi akademis potensi mikroalga Aurantiochytrium dari hutan bakau Indonesia. Tulisan ini mempresentasikan gambaran awal penelitian tentang mikroalga Aurantiochytrium mulai dari teknik isolasi mikroalga dari habitatnya, gambaran produksinya, teknik analisa kualitatif squalene hingga analisa potensi ekonomi dan fungsinya untuk bahan baku adjuvant vaksin. Sebanyak 10 sampel daun bakau diambil dari hutan bakau Raja Ampat, Papua Barat. Teknik isolasi menggunakan metode direct plating method. Setelah aplikasi teknik streaking dari koloni mikroalga yang ada pada sampel ke dalam medium agar, dihasilkan 4 isolat murni.  Produksi awal biomassa berbahan baku mikroalga Aurantiochytrium ditampikan dengan nutrisi glucosa, yeast extract, peptone dan campuran air laut dan aquadest. Analisa kualitatif produk yang dihasilkan menggunakan Kromatografi Lapis Tipis (KLT) menunjukkan hasil positif adanya sqalene pada biomassa hasil kultivasi isolat mikroalga Aurantiochytrium. Squalene dari hasil fermentasi mikroalga Aurantiochytrium telah banyak dikaji sebagai sumber bahan baku alternatif yang ramah lingkungan dan berkelanjutan (sustainable), Beberapa adjuvant vaksin, termasuk vaksin covid-19 menggunakan bahan baku mikroalga Aurantiochytrium untuk menggantikan adjuvant vaksin yang bersumber dari ikan hiu laut dalam. Di masa depan, potensi produk mikroalga Aurantiochytrium akan semakin dibutuhkan di banyak industri nutrisi kesehatan dan kosmetik. Mengingat relevansinya untuk masa depan industri strategis terkait di Indonesia, seyogyanya perlu riset mendalam yang lebih banyak dari isolat mikroalga Aurantiochytrium dari hutan bakau Indonesia.


Keywords


aurantiochytrium; adjuvant vaksin; covid-19; mikroalga; squalene

Full Text:

PDF


References

Aasen IM, Ertesvåg H, Heggeset TMB, Liu B, Brautaset T, Vadstein O, Ellingsen TE. 2016. Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids. Applied Microbiology and Biotechnology. 100(10):4309–4321. doi:10.1007/s00253-016-7498-4.

Abdel-Wahab MA, El-Samawaty AERM, Elgorban AM, Bahkali AH. 2022. Utilization of low-cost substrates for the production of high biomass, lipid and docosahexaenoic acid (DHA) using local native strain Aurantiochytrium sp. YB-05. Journal of King Saud University Science. 34:102224. doi:10.1016/j.jksus.2022.102224. https://linkinghub.elsev ier.com/retrieve/pii/S1018364722004050.

Bellou S, Triantaphyllidou IE, Aggeli D, Elazzazy AM, Baeshen MN, Aggelis G. 2016. Microbial oils as food additives: Recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Current Opinion in Biotechnology. 37:24–35. doi:10.1016/j.copbio.201 5.09.005.

Beltrán G, Bucheli ME, Aguilera MP, Belaj A, Jimenez A. 2016. Squalene in virgin olive oil: Screening of variability in olive cultivars. European Journal of Lipid Science and Technology. 118(8):1250–1253. doi:10.1002/ejlt.201500295.

Bhattacharjee P, Shukla VB, Singhal RS, Kulkarni PR. 2001. Studies on fermentative production of squalene. World Journal of Microbiology and Biotechnology. 17(8):811–816. doi:10.1023/A:1013573912952.

Burja AM, Radianingtyas H, Windust A, Barrow CJ. 2006. Isolation and characterization of polyunsaturated fatty acid producing Thraustochytrium species: Screening of strains and optimization of omega-3 production. Applied Microbiology and Biotechnology. 72(6):1161–1169. doi:10.100 7/s00253-006-0419-1.

Byrne J. 2019. German retailer puts algal oil fed salmon on shelves. https://www.feednavigator.com/Article/2019/0 1/31/German-retailer-puts-algal-oil-fed-salmon-on- shelves.

Cárdeno A, Aparicio-soto M, Paz SMd, Bermudez B, Muriana FJG, Alarcón-de-la lastra C. 2015. Squalene targets proand anti-inflammatory mediators and pathways to modulate over-activation of neutrophils , monocytes and macrophages. Journal of Functional Foods. 14:779–790. doi:10.1016/j.jff.2015.03.009.

Chandrasekaran K, Roy RK, Chadha A. 2018. Docosahexaenoic acid production by a novel high yielding strain of Thraustochytrium sp. of Indian origin: Isolation and bioprocess optimization studies. Algal Research. 32(October 2017):93–100. doi:10.1016/j.algal.2018.03.011.

Chang MH, Kim HJ, Jahng KY, Hong SC. 2008. The isolation and characterization of Pseudozyma sp. JCC 207, a novel producer of squalene. Applied Microbiology and Biotechnology. 78(6):963–972. doi:10.1007/s00253-008-1395-4.

Changeorg. 2020. Stop using sharks in COVID-19 vaccine use EXISTING sustainable options. https://www.chan ge.org/p/us-fda-food-and-drug-administration-of-th e-united-states-of-america-stop-using-sharks-in-co vid-19-vaccine-use-existing-sustainable options.

Cirmena G, Franceschelli P, Isnaldi E, Ferrando L, Mariano D, Ballestrero A, Zoppoli G. 2018. Squalene epoxidase as a promising metabolic target in cancer treatment. Cancer Letters. doi:10.1016/j.canlet.2018.03.034.

Cotterill BM. 2020. COVID-19 vaccine might require compounds from shark liver:1–7. https://canadiangeographic.c a/articles/covid-19-vaccine-might-require-compound s-from-shark-liver/.

Del Giudice G, Fragapane E, Bugarini R, Hora M, Henriksson T, Palla E, O’Hagan D, Donnelly J, Rappuoli R, Podda A. 2006. Vaccines with the MF59 adjuvant do not stimulate antibody responses against squalene. Clinical and Vaccine Immunology. 13(9):1010–1013. doi:10.1128/CVI.00191-06.

Dillon GP, Keegan JD, Moran CA. 2020. Toxicological evaluation of an unextracted Aurantiochytrium limacinum biomass, a novel docosahexaenoic acid rich feed ingredient. Food and Chemical Toxicology. 141(April):111397. doi: 10.1016/j.fct.2020.111397.

Du F, Wang YZ, Xu YS, Shi TQ, Liu WZ, Sun XM, Huang H. 2021. Biotechnological production of lipid and terpenoid from thraustochytrids. Biotechnology Advances. 48(February):107725. doi:10.1016/j.biotechadv.2021.107725.

Emma Bowman. 2020. A Coronavirus vaccine could kill half a million sharks, conservationists warn. https://www.np r.org/sections/coronavirus-live-updates/2020/10/10/9 22398246/a-coronavirus-vaccine-could-kill-half-a-m illion-sharks-conservationists-warn.

Evonik. 2018. DSM and Evonik establish Veramaris joint venture. https://corporate.evonik.com/en/dsm-und-evon ik-establish-veramaris-joint-venture-25327.html:$sim$:text=DSMandEvonikhaveestablished,Campus inDelft(Netherlands).

Evonik. 2021. Evonik stärkt strategische Partnerschaft mit BioNTech bei Covid-19 Impfstoff. https://corporate.ev onik.com/de/evonik-starkt-strategische-partnerscha ft-mit-biontech-bei-covid-19-impfstoff-152785.html :$sim$:text=HealthCare-,Evonikst{ä}rktstrategischePa rtnerschaftmitBioNTechbeiCovid-19Impfstoff,seinenSt andortenHanauundDossenheim.

Fossier L, Lee KJ, Nichols PD, Mitchell WJ, Polglase JL, Gutierrez T. 2018. Taxonomy , ecology and biotechnological applications of thraustochytrids : A review. Biotechnology Advances. 36(1):26–46. doi:10.1016/j.biotechadv.2017.09.003.

Fossier Marchan L, Lee Chang KJ, Nichols PD, Mitchell WJ, Polglase JL, Gutierrez T. 2018. Taxonomy, ecology and biotechnological applications of thraustochytrids: A review. Biotechnology Advances. 36(1):26–46. doi:10.1016/j.biot echadv.2017.09.003.

Fox CB, Baldwin SL, Duthie MS, Reed SG, Vedvick TS. 2011. Immunomodulatory and physical effects of oil composition in vaccine adjuvant emulsions. Vaccine. 29(51):9563– 9572. doi:10.1016/j.vaccine.2011.08.089.

Gohil N, Bhattacharjee G, Khambhati K, Braddick D. 2019. Engineering strategies in microorganisms for the enhanced production of squalene : advances , challenges and opportunities. 7(March):1–24. doi:10.3389/fbioe.2019.0 0050.

Gorvett BZ. 2020. The surprising ingredients found in vaccines. https://www.bbc.com/future/article/20201027-wh at-is-added-to-vaccines.

Herald M. 2020. Here ’ s why shark researchers are concerned about a potential COVID-19 vaccine:12–15. https://phys.o rg/news/2020-10-shark-potential-covid-vaccine.html. Hoang MH, Ha NC, Thom LT, Tam LT, Anh HTL, Thu NTH, Hong DD. 2014. Extraction of squalene as value-added product from the residual biomass of Schizochytrium mangrovei PQ6 during biodiesel producing process. Journal of Bioscience and Bioengineering. 118(6):632–639. doi:10.1016/j.jbiosc.2014.05.015.

Hong DD, Anh HTL, Thu NTH. 2011. Study on biological characteristics of heterotrophic marine microalgaschizochytrium mangrovei pq6 isolated from phu quoc island, kien giang province, vietnam. Journal of Phycology. 47(4):944–954. doi:10.1111/j.1529-8817.2011.01012.x.

Hutari A, Hidayati W, Mustopa A, Neubauer P. 2018. Aurantiochytrium sp. isolate LR52 small subunit ribosomal RNA gene, partial sequence. Technical report. National Center for Biological Information (NCBI).

Jaritkhuan S, Suanjit S. 2018. Species diversity and polyunsaturated fatty acid content of thraustochytrids from fallen mangrove leaves in Chon Buri province, Thailand. Agriculture and Natural Resources. 52(1):24–32. doi:10.1016/j. anres.2018.05.002.

Kalvodova L. 2010. Biochemical and biophysical research communications squalene-based oil-in-water emulsion adjuvants perturb metabolism of neutral lipids and enhance lipid droplet formation. Biochemical and Biophysical Research Communications. 393(3):350–355. doi: 10.1016/j.bbrc.2009.12.062.

Kasai H, Katsuta A, Sekiguchi H, Matsuda S, Adachi K, Shindo K, Yoon J, Yokota A, Shizuri Y. 2007. Rubritalea squalenifaciens sp. nov., a squalene-producing marine bacterium belonging to subdivision 1 of the phylum ’Verrucomicrobia’. International Journal of Systematic and Evolutionary Microbiology. 57(7):1630–1634. doi:10.1099/ijs.0.65 010-0.

Kaya K, Nakazawa A, Matsuura H, Honda D, Inouye I, Watanabe MM. 2011. Thraustochytrid aurantiochytrium sp. 18W-13a accummulates high amounts of squalene. Bioscience, Biotechnology, and Biochemistry. 75(11):2246– 2248. doi:10.1271/bbb.110430.

Li Q, Chen GQ, Fan KW, Lu FU, Aki T, Jiang Y. 2009. Screening and characterization of squalene-producingthraustochytrids from Hong Kong mangroves. Journal of Agricultural and Food Chemistry. 57(10):4267–4272. doi:10.1 021/jf9003972.

Lippi G, Targher G, Franchini M. 2010. European journal of internal medicine vaccination, squalene, and antisqualene antibodies: facts or fiction? European Journal of Internal Medicine. 21(2):70–73. doi:10.1016/j.ejim.2009. 12.001.

Lozano-Grande MA, Gorinstein S, Espitia-Rangel E, DávilaOrtiz G, Martínez-Ayala AL. 2018. Plant sources, extraction methods, and uses of squalene. International Journal of Agronomy. 2018:1–13. doi:10.1155/2018/1829160.

Mantzouridou F, Tsimidou MZ. 2010. Observations on squalene accumulation in Saccharomyces cerevisiae due to the manipulation of HMG2 and ERG6. FEMS Yeast Research. 10(6):699–707. doi:10.1111/j.1567-1364.2010.00645.x.

Melissa Cristina Marquez. 2020. Are Sharks Being Killed For Coronavirus Vaccines ? https://www.forbes.com/sites/melissacristinamarquez/2020/10/12/are-sharks-being-ki lled-for-covid19-vaccines/?sh=7c2820607e64.

Melody M Bomgardner. 2020. On the hunt for alternatives to shark squalene for vaccines. Chemical & Engineering News:21–23. doi:10.47287/cen-09847-feature2.

Morabito C, Bournaud C, Maës C, Schuler M, Aiese R, Dellero Y, Maréchal E, Amato A, Rébeillé F. 2019. Progress in lipid research The lipid metabolism in thraustochytrids. Progress in Lipid Research. 76(May):101007. doi:10.1016/j.pl ipres.2019.101007.

Nakazawa A, Kokubun Y, Matsuura H, Yonezawa N, Kose R, Yoshida M, Tanabe Y, Kusuda E, Van Thang D, Ueda M, Honda D, Mahakhant A, Kaya K, Watanabe MM. 2014. TLC screening of thraustochytrid strains for squalene production. Journal of Applied Phycology. 26(1):29–41. doi: 10.1007/s10811-013-0080-x.

Nakazawa A, Matsuura H, Kose R, Kato S, Honda D, Inouye I, Kaya K, Watanabe MM. 2012. Optimization of culture conditions of the thraustochytrid Aurantiochytrium sp. strain 18W-13a for squalene production. Bioresource Technology. 109:287–291. doi:10.1016/j.biortech.2011.09.127.

National Center for National Center for Biotechnology Information Biotechnology Information. 2020. PubChem Compound Summary for CID 638072, Squalene. https:

//pubchem.ncbi.nlm.nih.gov/compound/Squalene.

Pasquale AD, Preiss S, Fleming A. 2015. Vaccine Adjuvants : from 1920 to 2015 and Beyond:320–343. doi:10.3390/va ccines3020320.

Patel A, Rova U, Christakopoulos P, Matsakas L. 2020. Mining of squalene as a value-added byproduct from DHA producing marine thraustochytrid cultivated on food waste hydrolysate. Science of the Total Environment. 736:139691. doi:10.1016/j.scitotenv.2020.139691.

Phan T, Devine C, Laursen ED, Simpson A, Kahn A, Khandhar AP, Mesite S, Besse B, Mabery KJ, Flanagan EI, Fox CB. 2020. Squalene emulsion manufacturing process scaleup for enhanced global pandemic response. Pharmaceuticals. 13:168. doi:doi:10.3390/ph13080168.

Phillips CJ, Matyas GR, Hansen CJ, Alving CR, Smith TC, Ryan MAK. 2009. Antibodies to squalene in US Navy Persian Gulf War veterans with chronic multisymptom illness. 27:3921–3926. doi:10.1016/j.vaccine.2009.03.091.

Popa O, Băbeanu NE, Popa I, Niță S, Dinu-Pârvu CE. 2015. Methods for Obtaining and Determination of Squalene from Natural Sources. BioMed Research International. 2015:1– 16. doi:10.1155/2015/367202.

Research Grand View. 2014. Squalene market size and share global industry report, 2016-2024. https://www.grandvie wresearch.com/industry-analysis/squalene-market.

Rosales-Garcia T, Jimenez-Martinez C, Davila-Ortiz G. 2017. Squalene extraction: biological sources and extraction methods. International Journal of Environment, Agriculture and Biotechnology. 2(4):1662–1670. doi:10.22161/ije ab/2.4.26.

Savoy M. 2020. What’s New in Vaccine Science. Primary Care: Clinics in Office Practice. 47(3):517–528. doi:10.1016/j.pop. 2020.05.006.

Science The Wire. 2020. Could mass-producing a covid-19 vaccine kill half a million sharks ? https://science.thewire. in/health/sharks-covid-19-vaccine-adjuvant-squalen e/.

Shi S, Zhu H, Xia X, Liang Z, Ma X, Sun B. 2019. Vaccine adjuvants: Understanding the structure and mechanism of adjuvanticity. Vaccine. 37(24):3167–3178. doi:10.1016/j. vaccine.2019.04.055.

Spanggord RJ, Sun M, Lim P, Ellis WY. 2006. Enhancement of an analytical method for the determination of squalene in anthrax vaccine adsorbed formulations. 42:494–499. doi:10.1016/j.jpba.2006.04.009.

Spanova M, Daum G. 2011. Squalene – biochemistry, molecular biology, process biotechnology, and applications. European Journal of Lipid Science and Technology. 113(11):1299–1320. doi:10.1002/ejlt.201100203.

Stelzner JJ, Behrens M, Behrens Se, Mäder K. 2018. Squalenecontainingsolid lipid nanoparticles, apromisingadjuvant system for yeast vaccines. Vaccine:1–7. doi:10.1016/j. vaccine.2018.03.019.

Suhendra. 2020. Isolation of Marine Microalgae. https://ww w.youtube.com/watch?v=91cvOZ1A4I8.

Suhendra, E S, H Z, A H. 2019. Kajian Singkat Rancang Bangun Pabrik Docohexanoic Acid dari Mikroalga Species Aurantiochytrium dari Hutan Bakau Indonesia. Konversi. 8(1):33–44.

Suhendra S. 2022. Bioprocess of of astaxanthin production as functional food from aurantiochytrium microalgae: A review. CHEMICA: Jurnal Teknik Kimia. 8(2):123. doi:10.2 6555/chemica.v8i2.21954.

Suhendra S, Pantoiyo T, Fazlia S, Sulistiawati E, Evitasari RT. 2021. Bioprocess potentials of squalene from thraustochytrids microalgae for nutraceuticals in new normal era isolated from indonesian mangroves: A review. CHEMICA: Jurnal Teknik Kimia. 8(1):18. doi:10.26555/chemica.v 8i1.19121.

Thompson A, Kwak S, Jin Ys. 2014. Squalene Production using Saccharomyces cerevisiae. i-ACES. 1(1):57–63. https://core.ac.uk/download/pdf/29168323.pdf.

Tsujimoto M. 1916. A HIGHLY UNSATURATED HYDROCAR-BON IN SHARK LIVER OIL. Journal of Industrial & Engineering Chemistry. 8(10):889–896. doi:10.1021/i500010a 005.

Veramis. 2017. Evonik and DSM select Blair, Nebraska, as manufacturing site for innovative, new omega-3 fatty acids production. https://animal-nutrition.evonik.com/en/e vonik-and-dsm-select-blair-nebraska-as-manufactu ring-site-for-innovative-new-omega-3-fatty-acids-p r-100430.html.

Wai K, Tsunehiro F, Feng A. 2010. Enhanced production of squalene in the thraustochytrid Aurantiochytrium mangrovei by medium optimization and treatment with terbinafine:1303–1309. doi:10.1007/s11274-009-0301-2.

World Health Organization. 2020. Safety of squalene. Technical Report June 2006.

Xie Y, Sen B, Wang G. 2017. Mining terpenoids production and biosynthetic pathway in thraustochytrids. Bioresource Technology. 244:1269–1280. doi:10.1016/j.biortech.2017.05.002. https://linkinghub.elsevier.com/retrieve/pii/S 0960852417306417.

Xu W, Ma X, Wang Y. 2016. Production of squalene by microbes: an update. World Journal of Microbiology and Biotechnology. 32(12). doi:10.1007/s11274-016-2155-8.

Xue L, Li J, Wei L, Ma C, Tan S. 2019. Adjuvant option for effective SARS-CoV-2 vaccineadvancedtechniquesinbiology & medicine. (Table 1):1–7. doi:10.4172/2379-1764.1000274.

Zhang A, Xie Y, He Y, Wang W, Sen B, Wang G. 2019. Bio-based squalene production by Aurantiochytrium sp. through optimization of culture conditions, and elucidation of the putative biosynthetic pathway genes. Bioresource Technology. 287(April):121415. doi:10.1016/j.biortech.2019.1214 15.



DOI: https://doi.org/10.22146/jrekpros.72045

Article Metrics

Abstract views : 5988 | views : 4383

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 The authors

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.