Study of chromium removal from wastewater using SSF-CW model: comparison between physical adsorption by coal CFA and phytoremediation by vetiver grass (Vetiveria Zizanioides L)
Titik Indrawati(1), Sarto Sarto(2), Agus Prasetya(3*)
(1) Department of Chemical Engineering, Universitas Gadjah Mada, Jl. Grafika 2,Yogyakarta, 55281, Indonesia
(2) Department of Chemical Engineering, Universitas Gadjah Mada, Jl. Grafika 2,Yogyakarta, 55281, Indonesia
(3) Department of Chemical Engineering, Universitas Gadjah Mada, Jl. Grafika 2,Yogyakarta, 55281, Indonesia
(*) Corresponding Author
Abstract
The study aims to compare the effectiveness of chromium removal from water using adsorption by coal fly ash (CFA) and phytoremediation by vetiver grass (Vetiveria zizanioides L) as well as a combination of both CFA and vetiver grass. The experiment was carried out in four different reactors, having size of 100 cm (length) x 60 cm (wide) x 80 cm (height). One reactor was filled with gravel and CFA, without vetiver grass (RI), while another one was filled with gravel and vetiver grass, without CFA (RIV). The other two reactors were filled with gravel, CFA, and vetiver grass with the mass ratio of gravel/CFA of (25:2) and (25:1), denoted as RII and RIII, respectively. Fifty (50) L of synthetic wastewater containing 14.612 ppm of chromium was filled into the reactors and continuously recirculated for 15 days. Chromium accumulation in CFA and plants was analyzed on day 15. The results of plant development are indicated by the presence of new shoots and roots that grow during phytoremediation processes. In addition, there was an increase in weight and number of vetiver stems indicating the persistency of vetiver grass in such a harsh wastewater condition. The removal of Cr from wastewater in RI, RII, RIII and RIV at days 15 were 81%, 93.2%, 85.8% and 75.7%, respectively. It can be concluded that: (1) vetiver grass (Vetiveria zizanioides L) has high potential as phytoremediator plant, (2) Chromium adsorption by CFA plays important role in Cr removal from wastewater, and (3) combination of adsorption by CFA and a phytoremediation by vetiver grass significantly increases the removal of chromium from wastewater.
Keywords
Full Text:
PDFReferences
Adamczuk A, Kołodyńska D. 2015. Equilibrium, thermodynamic and kinetic studies on removal of chromium, copper, zinc and arsenic from aqueous solutions onto fly ash coated by chitosan. Chemical Engineering Journal. 274:200–212. doi:10.1016/j.cej.2015.03.088.
Allen, B and BF Hajek. 2018. Mineral occurrence in soil environment. https://doi.org/10.2136/sssabookser1.2ed.c5.
American Concrete Institute. 1991. ACI manual of concrete practice. pt. 1. American Concrete Institute. https://www.concrete.org/topicsinconcrete/topicdetail/manualofco ncretepractice?search=manualofconcretepractice.
Dotro G, Larsen D, Palazolo P. 2011. Preliminary evaluation of biological and physical–chemical chromium removal mechanisms in gravel media used in constructed wet lands. Water, Air, & Soil Pollution. 215(1-4):507–515. doi: 10.1007/s11270-010-0495-9.
Dwityaningsih R, Pramita A, Syarafina S. 2019. Review potensi tanaman obat akar wangi (vetiveria zizanioides) sebagai tanaman hiperakumulator dalam fitoremidiasi pada lahan tercemar logam. Jurnal Pengendalian Pencemaran Lingkungan (JPPL). 1(01):51–56. doi:10.35970/jppl.v1i01.55.
[EPA] Environmental Protection Agency. 2000. Free water surface wetlands. Environmental Protection Agency:1–8. https://www3.epa.gov/npdes/pubs/free_water_surface_wetlands.pdf.
Fadlilah I, Prasetya A, Mulyono P. 2018. Recovery ion Hg2+ dari limbah cair industri penambangan emas rakyat dengan metode presipitasi sulfida dan hidroksida. Jurnal Rekayasa Proses. 12(1):23. doi:10.22146/jrekpros.34496.
Gwenzi W, Mushaike CC, Chaukura N, Bunhu T. 2017. Removal of trace metals from acid mine drainage using a sequential combination of coal ash-based adsorbents and phytoremediation by bunchgrass (vetiver [vetiveria zizanioides l]). Mine Water and the Environment. 36(4):520– 531. doi:10.1007/s10230-017-0439-3.
Judy, Ir and Witono, Retti B and MScApp, Miryanti, YIP. 2015. Pengembangan adsorben activated fly ash untuk reduksi ion Cu2+ dan Cr6+ dalam limbah cair industri tekstil:9. ht tps://journal.unpar.ac.id/index.php/rekayasa/issue/vie w/210.
Mandalahi H, Muis L, Latief M. 2016. Adsorpsi merkuri (II) menggunakan zeolit dari fly ash batubara. Chempublish Journal. 1(1). https://core.ac.uk/download/pdf/229107857. pdf.
Melyta D, Prasetya A, Sarto. 2019. Pengaruh melati air terhadap penyisihan krom dalam limbah cair penyamakan kulit pada sistem subsurface Flow Constructed Wetland. Seminar Nasional Teknik Kimia Soebardjo Brotohardjono XV Program Studi Teknik Kimia UPN ”Veteran” Jawa Timur Proceding.
Ramdani F, Prasetya A, Purnomo CW. 2019. Removal of pollutants from chicken slaughterhouse wastewater using constructed wetland system. IOP Conference Series: Earth and Environmental Science. 399:012085. doi:10.1 088/1755-1315/399/1/012085.
Said M. 2008. Pengolahan limbah cair hasil pencelupan benang songket dengan metoda filtrasi dan adsorpsi. http:// ejurnal.mipa.unsri.ac.id/index.php/jps/article/view/421.
Srisatit T, Sengsai W. 2003. Chromium removal efficiency by vetiveria zizanioides and vetiveria nemoralis in constructed wetlands for tannery post-treatment wastewater. Methodology. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.510.4685&rep=rep1&type=pdf.
Sultana MY, Akratos CS, Pavlou S, Vayenas DV. 2014. Chromium removal in constructed wetlands: A review. International Biodeterioration & Biodegradation. 96:181–190. doi:10.1016/j.ibiod.2014.08.009.
Supradata. 2005. Pengolahan limbah domestik menggunakan tanaman hias (cyperus alternifolius) dalam sistem lahan basah buatan aliran bawah permukaan (ssf-wetlands). Program Pasca sarjana Universitas Diponegoro:64–67. http://eprints.undip.ac.id/15122/.
Suswati ACSP, Wibisono G. 2013. Pengolahan limbah domestik dengan teknologi taman tanaman air (constructed wetlands). Indonesian Green Technology Journal. 2(2):70–77. https://igtj.ub.ac.id/index.php/igtj/article/view/117.
Tchobanoglous G, Burton FL, Stensel HD, Metcalf & Eddy I, Burton F. 2003. Wastewater engineering: treatment and reuse. McGraw-Hill higher education. McGraw-Hill Education. https://onesearch.id/Record/IOS2847.INLIS000 000000014658.
Wardani, L, D K. 2018. Karakterisasi fly ash (abu terbang) batubara sebagai adsorben pada limbah cair yang mengandung logam. https://eprints.uny.ac.id/57987/.
DOI: https://doi.org/10.22146/jrekpros.69978
Article Metrics
Abstract views : 1122 | views : 815Refbacks
- There are currently no refbacks.
Copyright (c) 2022 The authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.