Effectiveness of Secondary Metabolites from Entomopathogenic Fungi for Control Nilaparvata lugens Stål. in the Laboratory Scale

https://doi.org/10.22146/jpti.62116

Endang Warih Minarni(1*), Loekas Soesanto(2), Agus Suyanto(3), Rostaman Rostaman(4)

(1) Faculty of Agriculture, Universitas Jenderal Soedirman Jln. Dr. Soeparno No.63, North Purwokerto District, Banyumas Regency, Central Java 53122 Indonesia
(2) Faculty of Agriculture, Universitas Jenderal Soedirman Jln. Dr. Soeparno No.63, North Purwokerto District, Banyumas Regency, Central Java 53122 Indonesia
(3) Faculty of Agriculture, Universitas Jenderal Soedirman Jln. Dr. Soeparno No.63, North Purwokerto District, Banyumas Regency, Central Java 53122 Indonesia
(4) Faculty of Agriculture, Universitas Jenderal Soedirman Jln. Dr. Soeparno No.63, North Purwokerto District, Banyumas Regency, Central Java 53122 Indonesia
(*) Corresponding Author

Abstract


Nilaparvata lugens Stål. is an essential pest in rice plants. This pest attack can reduce crop yields and even crop failure. This research was conducted to obtain secondary metabolites that are effective in controlling brown planthopper (BPH). A randomized block design was used to test the effectiveness of secondary metabolites against BPH. The treatments tested were secondary metabolites produced by eight isolates of fungi consist of three concentrations: 5, 10, and 15%. Water and imidacloprid insecticide were used as control. The eight isolates were: J11 (Aspergillus sp.), J22 (Lecanicillium saksenae), J34 (Myrothecium sp.), J35 (Beauveria sp.), J41 (Fusarium sp.), J56 (Fusarium sp), J60 (Simplicillium sp.), and J65 (Curvularia sp.). Each treatment was repeated three times. The variables observed were mortality and time of death of BPH. Data were analyzed using the F test and followed by a DMRT if significant differences existed. The results showed that the secondary metabolites of the Lecanicillium saksenae, Myrothecium sp., and Simplicillium sp. fungi effectively controlled BPH pests by 80‒100% within 3.22‒5.47 days. The fungus L. saksenae, Myrothecium sp., and Simplicillium sp. contain insecticidal compounds, clogging the insect spiraculum, antifeedant, repellant, and antimicrobial.

Keywords


controlling; entomopathogenic fungi; Nilaparvata lugens; secondary metabolites

Full Text:

PDF


References

Abubakar, M.N. & Majinda, R.R.T. (2016). GC-MS Analysis and Preliminary Antimicrobial Activity of Albizia adianthifolia (Schumach) and Pterocarpus angolensis (DC). Medicines, 3(3), 1–9. https://doi.org/10.3390/medicines3010003

Atta, B., Rizwan, M., Sabir, A.M., Golgi, M.D., Farooq, M.A., & Batta, Y.A. (2020). Efficacy of Entomopathogenic Fungi against Brown Planthopper Nilaparvata lugens (Stål) (Homoptera: Delphacidae) Under Controlled Conditions. Gesunde Pflanzen, 72(2), 101–112. https://doi.org/10.1007/s10343-019-00490-6

Bandani, A.R., Khambay, B.P.S., Faull, J.L., Newton, R., Deadman, M., & Butt, T.M. (2000). Production BPS of Efrapeptins by Tolypocladium species (Deuteromycotina: Hyphomycetes) and Evaluation of Their Insecticidal and Antimicrobial Properties. Mycological Research, 104(5), 537–544. https://doi.org/10.1017/S0953756299001859

Bhatt, N. & Tiwari, S.N. (2015). Identification of New Sources of Resistance against Brown Plant Hopper. Journal of Plant Science and Research, 2(2), 126. Retrieved from https://www.opensciencepublications.com/fulltextarticles/JPSR-2349-2805-2-126.html

Birkett, M.A., Hassanali, A., Hoglund, S., Pettersson, J., & Pickett, J.A. (2011). Repellent Activity of Catmint, Nepeta cataria, and Iridoid Nepetalactone Isomers against Afro-Tropical Mosquitoes, Ixodid Ticks, and Red Poultry Mites. Phytochemistry, 72(1), 109–114. https://doi.org/10.1016/j.phytochem.2010.09.016

Celestino, F.N., Pratissoli, D., Machado, L.C., Santos Junior, H.J.G.D., Queiroz, V.T.D., & Mardgan, L. (2016). Control of Coffee Berry Borer, Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae: Scolytinae) with Botanical Insecticides and Mineral Oils. Acta Scientiarum. Agronomy, 38(1), 1–8. https://doi.org/10.4025/actasciagron.v38i1.27430

Chinniah, C.C.H., Ravikumar, A.S., Kalyanasundaram, M., & Parthiban, P. (2016). Field Evaluation of Metarhizium anisopliae Liquid Formulation (Bio-Magic®) against Brown Plant Hopper, Nilaparvata lugens Stal. on Rice. Journal of Biopesticides, 9(2), 211–219. Retrieved from http://www.jbiopest.com/users/LW8/efiles/vol_9_2_211-219.pdf

Donzelli, B.G.G., & Krasnoff, S.B. (2016). Chapter Ten - Molecular Genetics of Secondary Chemistry in Metarhizium Fungi. In B. Lovett & R.J. St. Leger (Eds.), Genetics and Molecular Biology of Entomopathogenic Fungi (Vol. 94, pp. 365–436). https://doi.org/10.1016/bs.adgen.2016.01.005

Hamada, H.M., Awad, M., El-Hefny, M., & Moustafa, M.A.M. (2018). Insecticidal Activity of Garlic (Allium sativum) and Ginger (Zingiber officinale) Oils on the Cotton Leafworm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). African Entomology, 26(1), 84–94. https://doi.org/10.4001/003.026.0084

Hautbergue, T., Jamin, E.L., Debrauwer, L., Puel, O., & Oswald, I.P. (2018). From Genomics to Metabolomics, Moving toward an Integrated Strategy for the Discovery of Fungal Secondary Metabolites. Natural Product Reports, 35(2), 147–173. https://doi.org/10.1039/C7NP00032D

Herlinda, S., Oktareni, S. S., Suparman, Anggraini, E., Elfita, Setiawan, A., ... Lakitan, B. (2020). Effect of Application of UV Irradiated Beauveria bassiana and Metarhizium anisopliae on Larval Weight and Mortality of Spodoptera litura. Proceedings of the International Conference and the 10th Congress of the Entomological Society of Indonesia (ICCESI 2019), 64–70. Paris, France: Atlantis Press. https://doi.org/10.2991/absr.k.200513.011

Hsia, I.C.C., Islam, M.T., Ibrahim, Y., T.Y. How, & Omar, D. (2014). Evaluation of Conidial Viability of Entomopathogenic Fungi as Influenced by Temperature and Additive. International Journal of Agriculture and Biology, 16(1), 146–152. Retrieved from https://www.fspublishers.org/Issue.php?y=2014&v_no=16&categoryID=122

Huddart, H., & Saad, K.H. (1980). Papaverine-Induced Inhibition of Electrical and Mechanical Activity and Calcium Movements of Rat Ileal Smooth Muscle. Journal of Experimental Biology, 86(1), 99–114. https://doi.org/10.1242/jeb.86.1.99

Julianto, P.A. (2017, September 4). 63.000 Hektar Sawah Terkena Serangan Hama Wereng. (A. Ika, Ed.), KOMPAS.Com. Retrieved from https://ekonomi.kompas.com

Kaiser, D., Bacher, S., Mène-Saffrané, L., & Grabenweger, G. (2018). Efficiency of Natural Substances to Protect Beauveria bassiana Conidia from UV Radiation. Pest Management Science, 75(2), 556–563. https://doi.org/10.1002/ps.5209

Khan, M.M., Nawaz, M., Hua, H., Cai, W., & Zhao, J. (2018). Lethal and Sublethal Effects of Emamectin Benzoate on the Rove Beetle, Paederus fuscipes, a Non-target Predator of Rice Brown Planthopper, Nilaparvata lugens. Ecotoxicology and Environmental Safety, 165, 19–24. https://doi.org/10.1016/j.ecoenv.2018.08.047

Kim, J.J., Jeong, G., Han, J. H., & Lee, S. (2013). Biological Control of Aphid Using Fungal Culture and Culture Filtrates of Beauveria bassiana. Mycobiology, 41(4), 221–224. https://doi.org/10.5941/MYCO.2013.41.4.221

Klingen, I., Westrum, K., & Meyling, N.V. (2015). Effect of Norwegian Entomopathogenic Fungal Isolates against Otiorhynchus sulcatus Larvae at Low Temperatures and Persistence in Strawberry Rhizospheres. Biological Control, 81, 1–7. https://doi.org/10.1016/j.biocontrol.2014.10.006

Litwin, A., Nowak, M., & Różalska, S. (2020). Entomopathogenic Fungi: Unconventional Applications. Reviews in Environmental Science and Bio/Technology, 19(1), 23–42. https://doi.org/10.1007/s11157-020-09525-1

Minarni, E.W., Soesanto, L., Suyanto, A., & Rostaman. (2020). Exploration and Pathogenicity Test of Entomopathogenic Fungus from Brown Planthopper (Nilaparvata lugens Stal) Pest. Ecology, Environment & Conservation, 26(1), 24–33. Retrieved from http://www.envirobiotechjournals.com/EEC/26Issue12020/EEC26-4.pdf

Minarni, E.W., Suyanto, A., & Kartini. (2018). Potensi Parasitoid Telur dalam Mengendalikan WBC (Nilaparvata lugens Stal.) Pasca Ledakan Populasi di Kabupaten Banyumas. Jurnal Perlindungan Tanaman Indonesia, 22(2), 132–142. https://doi.org/10.22146/jpti.28886

Mishra, S., Kumar, P., & Malik, A.(2015). Effect of Temperature and Humidity on Pathogenicity of Native Beauveria bassiana Isolate against Musca domestica L. Journal of Parasitic Disease, 39(4), 697–704. https://doi.org/10.1007/s12639-013-0408-0

Niu, X., Xie, W., Zhang, J., & Hu, Q. (2019). Biodiversity of Entomopathogenic Fungi in the Soils of South China. Microorganisms, 7(9), 311. https://doi.org/10.3390/microorganisms7090311

Rai, D., Updhyay, V., Mehra, P., Rana, M., & Pandey, A.K. (2014). Potential of Entomopathogenic Fungi as Biopesticides. Indian Journal of Scientific Research and Technology, 2(5), 7–13. Retrieved from https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.679.1658&rep=rep1&type=pdf

Rashid, M.M., Jahan, M., & Islam, K.S. (2016). Impact of Nitrogen, Phosphorus, and Potassium on Brown Planthopper and Tolerance of Its Host Rice Plants. Rice Science, 23(3), 119−131. https://doi.org/10.1016/j.rsci.2016.04.001

Reichert, W., Ejercito, J., Guda, T., Dong, X., Wu, Q., Ray, A., & Simon, J. E. (2019). Repellency Assessment of Nepeta cataria Essential Oils and Isolated Nepetalactones on Aedes aegypti. Scientific Reports, 9(1), 1524. http://doi.org/10.1038/s41598-018-36814-1

Romeh, A.A. (2009). Control of Varroa Mite (Varroa destructor) on Honey Bees by Sycamore Leaves (Ficus sycomorus). Journal of Applied Sciences Research, 5(2), 151–157. Retrieved from http://www.aensiweb.com/old/jasr/jasr/2009/151-157.pdf

Safavi, S.A. (2010). Isolation, Identification and Pathogenicity Assessment of A New Isolate of Entomopathogenic Fungus, Beauveria bassiana in Iran. Journal of Plant Protection Research, 50(2), 158–163. https://doi.org/10.2478/v10045-010-0027-z

Saldarriaga Ausique, J.J., D’Alessandro, C.P., Conceschi, M.R., Mascarin, G.M., & Delalibera Júnior, I. (2017). Efficacy of Entomopathogenic Fungi against Adult Diaphorina citri from Laboratory to Field Applications. Journal of Pest Science, 90(3), 947–960. https://doi.org/10.1007/s10340-017-0846-z

Sánchez-Pérez, L., Rodríguez-Navarro, S., Marín-Cruz, V.H., Ramos-López, M.N., Ramos, A.P., & Barranco-Florido, J.E. (2016). Assessment of Beauveria bassiana and Their Enzymatic Extracts against Metamasius spinolae and Cyclocephala lunulata in Laboratory. Advances in Enzyme Research, 4(3), 98–112. https://doi.org/10.4236/aer.2016.43010

Sengupta, S.K., Hutchenson, K.W., Hallahan, D.L., Gonzalez, Y.I., Manzer, L.E., Jackson, S.C., ... Kou, B. (2018). Hydrogenation of Naturally-Derived Nepetalactone as a Topical Insect Repellent. ACS Sustainable Chemistry & Engineering, 6(8), 9628–9639. https://doi.org/10.1021/acssuschemeng.7b04521

Shimizu, K., Yoshihara, E., Takahashi, M., Gotoh, K., Orita, S., Urakawa, N., & Nakajyo, S. (2000). Mechanism of Relaxant Response to Papaverine on the Smooth Muscle of Non-pregnant Rat Uterus. Journal of Smooth Muscle Research, 36(3), 83–91. https://doi.org/10.1540/jsmr.36.83

Sogan, N., Kapoor, N., Kala, S., Patanjali, P.K., Nagpal, B.N., Vikram, K., & Valecha, N. (2018). Larvicidal Activity of Castor Oil Nanoemulsion against Malaria Vector Anopheles culicifacies. International Journal of Mosquito Research, 5(3), 1–6. Retrieved from https://www.dipterajournal.com/pdf/2018/vol5issue3/PartA/5-2-10-689.pdf

Sosa, A., Costa, M., Salvatore, A., Bardon, A., Borkosky, S., & Vera, N. (2017). Insecticidal Effects of Eudesmanes from Pluchea sagittalis (Asteraceae) on Spodoptera frugiperda and Ceratitis capitata. International Journal of Environment, Agriculture and Biotechnology, 2(1), 361–369. https://doi.org/10.22161/ijeab/2.1.45

Sumikarsih, E., Herlinda, S., & Pujiastuti, Y. (2019). Conidial Density and Viability of Beauveria bassiana Isolates from Java and Sumatra and Their Virulence against Nilaparvata lugens at Different Temperatures. AGRIVITA Journal of Agricultural Science, 41(2), 335–350. https://doi.org/10.17503/agrivita.v41i2.2105

Surahmaida & Umarudin. (2019). Toxicity of Miana Leaf (Coleus blumei) Extract against Houseflies (Musca domestica). Biosaintifika: Journal of Biology & Biology Education, 11(2), 249–255. https://doi.org/10.15294/biosaintifika.v11i2.19402

Surahmat, E.C., Dadang, & Prijono, D. (2016). Kerentanan Wereng Batang Cokelat, Nilaparvata lugens Stal. (Hemiptera: Delphacidae), dari Enam Lokasi di Pulau Jawa terhadap Tiga Jenis Insektisida. Jurnal Hama dan Penyakit Tumbuhan Tropika, 16(1), 71−81. https://doi.org/10.23960/j.hptt.11671-81

Suryadi, Y., Wartono, Susilowati, D.N., Lestari, P., Nirmalasari, C., & Suryani (2018) Pathogenicity of Beaveuria basiiana strain STGD 7(14)2 and STGD 5(14)2 against Brown Planthopper (Nilaparvata lugens Stal.). Al-Kauniyah: Jurnal Biologi, 11(2), 122–132. https://doi.org/10.15408/kauniyah.v11i2.6694

Susilo, F.X., Hasibuan, R., Nordin, G.L., & Brown, G.C. (1993). The Concept of Threshold Density in Insect Pathologi: A Theoritical and Experimental Study on Tetranychus - Neozygites Mycosis. In E. Martono, E. Mahrub, N.S. Putra, & Y. Trisetyawati (Eds.), Prosiding Makalah Simposium Patologi Serangga I, 29–37. Yogyakarta, Indonesia: PEI Yogyakarta.

Syahrawati, M., Putra, O.A., Rusli, R., & Sulyanti, E. (2019). Population Structure of Brown Planthopper (Nilaparvata lugens, Hemiptera: Delphacidae) and Attack Level in Endemic Area of Padang City, Indonesia [Special Issue]. Asian Journal of Agriculture and Biology, 7, 271–276. Retrieved from https://www.asianjab.com/wp-content/uploads/2019/12/36-My-Syahrawati.pdf

Tabanca, N., Wedge, D.E., Ali, A., Khan, I.A., Kaplancikli, Z.A., & Altintop, M.D. (2013). Antifungal, Mosquito Deterrent, and Larvicidal Activity of N-(benzylidene)-3-cyclohexylpropionic acid hydrazide Derivatives. Medicinal Chemistry Research, 22, 2602–2609. https://doi.org/10.1007/s00044-012-0250-4

Tian, Y., Gao, Y., Chen, Y., Liu, G., & Ju, X. (2019). Identification of the Fipronil Resistance Associated Mutations in Nilaparvata lugens GABA Receptors by Molecular Modeling. Molecules, 24, 4116. https://doi.org/10.3390/molecules24224116

Valencia, J.W.A., Gaitán Bustamante, A.L., Jiménez, A.V., & Grossi-de-Sá, M.F. (2011). Cytotoxic Activity of Fungal Metabolites from the Pathogenic Fungus Beauveria bassiana: An Intraspecific Evaluation of Beauvericin Production. Current Microbiology, 63(3), 306–312. https://doi.org/10.1007/s00284-011-9977-2

Wada, K., Enomoto, Y., & Munakata, K. (1970). Insect Feeding Inhibitors in Plants. Part II. The Structures of Shiromodiol-diacetate, Shiromool, and Shiromodiol-monoacetate. Agricultural and Biological Chemistry, 34(6), 946–953. https://doi.org/10.1080/00021369.1970.10859694

Wang, X., Gong, X., Li, P., Lai, D., & Zhou, L. (2018). Structural Diversity and Biological Activities of Cyclic Depsipeptides from Fungi. Molecules, 23(1), 169. https://doi.org/10.3390/molecules23010169

Wu, S.-F., Zeng, B., Zheng, C., Mu, X.-C., Zhang, Y., Hu, J., … Shen, J.-L. (2018). The Evolution of Insecticide Resistance in the Brown Planthopper (Nilaparvata lugens Stål) of China in the Period 2012–2016. Scientific Reports, 8(1), 4586. https://doi.org/10.1038/s41598-018-22906-5

Zaman, S., Hasan, M., Ahmad, F., & Javed, N. (2020). Pathogenicity of Entomopathogenic Fungi against Sitophilus granarius (L.) (Coleoptera: Curculionidae) under Abiotic Factors. Pakistan Journal of Agricultural Sciences, 57(1), 79–86. Retrieved from https://pakjas.com.pk/papers/3075.pdf

Zhang, L., Fasoyin, O. E., Molnár, I., & Xu, Y. (2020). Secondary Metabolites from Hypocrealean Entomopathogenic Fungi: Novel Bioactive Compounds. Natural Product Reports, 37(9), 1181–1206. https://doi.org/10.1039/C9NP00065H

Zhang, X., Liao, X., Mao, K., Zhang, K., Wan, H., & Li, J. (2016). Insecticide Resistance Monitoring and Correlation Analysis of Insecticides in Field Populations of the Brown Planthopper Nilaparvata lugens (Stål) in China 2012–2014. Pesticide Biochemistry and Physiology, 132, 13–20. https://doi.org/10.1016/j.pestbp.2015.10.003

Zhang, Y., Yang, B., Li, J., Liu, M., & Liu, Z. (2017). Point Mutations in Acetylcholinesterase 1 Associated with Chlorpyrifos Resistance in the Brown Planthopper, Nilaparvata lugens Stål. Insect Molecular Biology, 26(4), 453–460. https://doi.org/10.1111/imb.12309

Zhu, J., Li, Y., Jiang, H., Liu, C., Lu, W., Dai, W., ... Liu, F. (2018). Selective Toxicity of the Mesoionic Insecticide, Triflumezopyrim, to Rice Planthoppers and Beneficial Arthropods Ecotoxicology, 27(4), 411–419. https://doi.org/10.1007/s10646-018-1904-x



DOI: https://doi.org/10.22146/jpti.62116

Article Metrics

Abstract views : 2295 | views : 2212

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Jurnal Perlindungan Tanaman Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Jurnal Perlindungan Tanaman Indonesia ISSN 1410-1637 (print), ISSN 2548-4788 (online) is published by the Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, in collaboration with Indonesian Entomological Society (Perhimpunan Entomologi Indonesia, PEI) and Indonesian Phytopathological Society (Perhimpunan Fitopatologi Indonesia, PFI). The content of this website is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

View website statistics