The Effect of Emotional Distraction on Declarative Memory and an Exploration of its Physiological Marker: An Affective Computing Perspective

https://doi.org/10.22146/jpsi.74145

Zulfikri Khakim(1*), Sri Kusrohmaniah(2)

(1) Fakultas Psikologi Universitas Gadjah Mada
(2) Fakultas Psikologi Universitas Gadjah Mada
(*) Corresponding Author

Abstract


One of the advantage of e-learning method is the flexibility of embedding audio-visual materials, however whether this goal-irrelevant stimuli would distract the users instead and hinder their performance is generally unknown. The present study aimed to investigate the effects of emotional distraction (ED) on the declarative memory performance. The study was conducted using the within-subject experiment on 38 students aged 18-21 years (20 males). Declarative memory was measured using a Word-Pair Association (WPA) task. ED is given using the International Affective Pictures System (IAPS) and International Affective Digitized Sounds (IADS) grouped based on their valence (neutral, positive, and negative). Measurement of physiological responses was done by measuring Galvanic Skin Responses (GSR), and Electroencephalography (EEG) with Frontal Alpha Asymmetry (FAA) index. Result: significant difference on the WPA score of which Positive is lower than Neutral condition (p = 0.011), but only on the group which the positive block were presented first. From the GSR data, significant main effect of the order of experimental block regardless of the ED valence (p < 0.001; F = 16.045), the first block elicits significantly higher GSR amplitude compared to second (p < 0.001; t = 4.94) and third (p = 0.001; t = 3.90). Meanwhile, the FAA index showed no significant difference (p = 0.654; F = 0.433).


Keywords


emotional distraction; declarative memory; GSR; EEG

Full Text:

PDF


References

Adelman, J. S., & Estes, Z. (2013). Emotion and memory: A recognition advantage for positive and negative words independent of arousal. Cognition, 129(3), 530–535. https://doi.org/10.1016/j.cognition.2013.08.014

Allen, J. J. B., Coan, J. A., & Nazarian, M. (2004). Issues and assumptions on the road from raw signals to metrics of frontal EEG asymmetry in emotion. Biological Psychology, 67(1–2), 183–218. https://doi.org/10.1016/j.biopsycho.2004.03.007

Barrett, L. F., & Bliss‐Moreau, E. (2009). Affect as a Psychological Primitive (pp. 167–218). https://doi.org/10.1016/S0065-2601(08)00404-8

Barrett, L. F., Lewis, M., & Haviland-Jones M., J. (2016). Handbook of Emotions (4th edition). In The Guilford Press (Vol. 1).

Bennion, K. A., Ford, J. H., Murray, B. D., & Kensinger, E. A. (2013). Oversimplification in the Study of Emotional Memory. Journal of the International Neuropsychological Society, 19(9), 953–961. https://doi.org/10.1017/S1355617713000945

Boucsein, W. (2012). Electrodermal Activity. Bradley, M. M., & Lang, P. J. (1999). International affective digitized sounds (IADS): Stimuli, instruction manual and affective ratings. Tech. Rep. No. B-2.

Bramão, I., & Johansson, M. (2017). Benefits and Costs of Context Reinstatement in Episodic Memory: An ERP Study. Journal of Cognitive Neuroscience, 29(1), 52–64. https://doi.org/10.1162/jocn_a_01035

Buchanan, T. W., & Lovallo, W. R. (2001). Enhanced memory for emotional material following stress-level cortisol treatment in humans. Psychoneuroendocrinology, 26(3), 307–317. https://doi.org/10.1016/S0306-4530(00)00058-5

Coan, J. A., & Allen, J. J. B. (2004). Frontal EEG asymmetry as a moderator and mediator of emotion. Biological Psychology, 67(1–2), 7–50. https://doi.org/10.1016/j.biopsycho.2004.03.002

Cohen, N., Henik, A., & Moyal, N. (2012). Executive control attenuates emotional effects—For high reappraisers only? Emotion, 12(5), 970–979. https://doi.org/10.1037/a0026890

Davidson, R. J. (1993). Cerebral asymmetry and emotion: Conceptual and methodological conundrums. Cognition and Emotion, 7(1), 115–138. https://doi.org/10.1080/02699939308409180

Davidson, R. J. (2004). What does the prefrontal cortex “do” in affect: perspectives on frontal EEG asymmetry research. Biological Psychology, 67(1–2), 219–234. https://doi.org/10.1016/j.biopsycho.2004.03.008

Dolcos, F., & McCarthy, G. (2006). Brain systems mediating cognitive interference by emotional distraction. Journal of Neuroscience, 26(7), 2072–2079. https://doi.org/10.1523/JNEUROSCI.5042-05.2006

Eichenbaum, H., Cohen, N. J., Otto, T., & Wible, C. (1991). Memory representation in the hippocampus: Functional domain and functional organization. In Memory: Organization and locus of change. (pp. 163–204). Oxford University Press.

Figner, B., & Murphy, R. O. (2011). Using skin conductance in judgment and decision making research. In A handbook of process tracing methods for decision research: A critical review and user’s guide. (pp. 163–184). Psychology Press.

Hairston, W. D. (2012). Accounting for Timing Drift and Variability in Contemporary Electroencepholography ( EEG ) Systems. DTIC Document, March, 1–22. http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA561715

Herman, J. P. (2013). Neural control of chronic stress adaptation. Frontiers in Behavioral Neuroscience, 7. https://doi.org/10.3389/fnbeh.2013.00061

Holz, J., Piosczyk, H., Landmann, N., Feige, B., Spiegelhalder, K., Riemann, D., Nissen, C., & Voderholzer, U. (2012). The Timing of Learning before Night-Time Sleep Differentially Affects Declarative and Procedural Long-Term Memory Consolidation in Adolescents. PLoS ONE, 7(7), e40963. https://doi.org/10.1371/journal.pone.0040963

Howitt, D., & Cramer, D. (2017). Understanding Statistics in Psychology with SPSS (7th ed.).

Pearson. Jackson, D. C., Mueller, C. J., Dolski, I., Dalton, K. M., Nitschke, J. B., Urry, H. L., Rosenkranz, M. A., Ryff, C. D., Singer, B. H., & Davidson, R. J. (2003). Now You Feel It, Now You Don’t. Psychological Science, 14(6), 612–617. https://doi.org/10.1046/j.0956-7976.2003.psci_1473.x

ung, T.-P., Makeig, S., Humphries, C., Lee, T.-W., McKeown, M. J., Iragui, V., & Sejnowski, T. J. (2000). Removing electroencephalographic artifacts by blind source separation. Psychophysiology, 37(2), 163–178. https://doi.org/10.1111/1469-8986.3720163

Kihlstrom, J. F., Dorfman, J., & Park, L. (2017). Conscious and unconscious memory. The Blackwell Companion to Consciousness, 562–575. https://doi.org/10.1002/9781119132363.ch40

Knight, M., & Mather, M. (2009). Reconciling Findings of Emotion-Induced Memory Enhancement and Impairment of Preceding Items. Emotion, 9(6), 763–781. https://doi.org/10.1037/a0017281

Knörzer, L., Brünken, R., & Park, B. (2016). Facilitators or suppressors: Effects of experimentally induced emotions on multimedia learning. Learning and Instruction, 44, 97–107. https://doi.org/10.1016/j.learninstruc.2016.04.002

Kotowski, K., Stapor, K., Leski, J., & Kotas, M. (2018). Validation of Emotiv EPOC+ for extracting ERP correlates of emotional face processing. Biocybernetics and Biomedical Engineering, 38(4), 773–781. https://doi.org/10.1016/j.bbe.2018.06.006

LaBar, K. S., & Cabeza, R. (2006). Cognitive neuroscience of emotional memory. Nature Reviews Neuroscience, 7(1), 54–64. https://doi.org/10.1038/nrn1825

Lang, P. J. (1995). International Affective Picture System (IAPS) : Technical Manual and Affective Ratings. Lopez-Calderon, J., & Luck, S. J. (2014). ERPLAB: An open-source toolbox for the analysis of event-related potentials. Frontiers in Human Neuroscience, 8(1 APR), 1–14. https://doi.org/10.3389/fnhum.2014.00213

Luck, S. J. (2012). Event-related potentials. In APA handbook of research methods in psychology, Vol 1: Foundations, planning, measures, and psychometrics. (pp. 523–546). American Psychological Association. https://doi.org/10.1037/13619-028

Luck, S. J. (2014). An introduction to the event-related potential technique. MIT Press.

Luethi, M., Meier, B., & Sandi, C. (2009). Stress effects on working memory, explicit memory, and implicit memory for neutral and emotional stimuli in healthy men. Frontiers in Behavioral Neuroscience, 3(JAN), 1–9. https://doi.org/10.3389/neuro.08.005.2008

Lynn, S. K., Zhang, X., & Barrett, L. F. (2012). Affective state influences perception by affecting decision parameters underlying bias and sensitivity. Emotion, 12(4), 726–736. https://doi.org/10.1037/a0026765

Meng, X., Zhang, L., Liu, W., Ding, X., Li, H., Yang, J., & Yuan, J. (2017). The impact of emotion intensity on recognition memory: Valence polarity matters. International Journal of Psychophysiology, 116, 16–25. https://doi.org/10.1016/j.ijpsycho.2017.01.014

Moscovitch, D. A., Santesso, D. L., Miskovic, V., McCabe, R. E., Antony, M. M., & Schmidt, L. A. (2011). Frontal EEG asymmetry and symptom response to cognitive behavioral therapy in patients with social anxiety disorder. Biological Psychology, 87(3), 379–385. https://doi.org/10.1016/j.biopsycho.2011.04.009

Nourbakhsh, N., Wang, Y., Chen, F., & Calvo, R. A. (2012). Using galvanic skin response for cognitive load measurement in arithmetic and reading tasks. Proceedings of the 24th Australian Computer-Human Interaction Conference, OzCHI 2012, 420–423. https://doi.org/10.1145/2414536.2414602

Papousek, I., Reiser, E. M., Weber, B., Freudenthaler, H. H., & Schulter, G. (2012). Frontal brain asymmetry and affective flexibility in an emotional contagion paradigm. Psychophysiology, 49(4), 489–498. https://doi.org/10.1111/j.1469-8986.2011.01324.x

Pratto, F., & John, O. P. (1991). Automatic Vigilance: The Attention-Grabbing Power of Negative Social Information. Journal of Personality and Social Psychology, 61(3), 380–391. https://doi.org/10.1037/0022-3514.61.3.380

Quaedflieg, C. W. E. M., Smulders, F. T. Y., Meyer, T., Peeters, F., Merckelbach, H., & Smeets, T. (2015). The validity of individual frontal alpha asymmetry EEG neurofeedback. Social Cognitive and Affective Neuroscience, 11(1), 33–43. https://doi.org/10.1093/scan/nsv090

Rice, J. A., Levine, L. J., & Pizarro, D. A. (2007). “Just Stop Thinking About It”: Effects of Emotional Disengagement on Children’s Memory for Educational Material. Emotion, 7(4), 812–823. https://doi.org/10.1037/1528-3542.7.4.812 Schaefer, A., Fletcher, K., Pottage, C. L., Alexander, K., & Brown, C. (2009). The effects of emotional intensity on ERP correlates of recognition memory. NeuroReport, 20(3), 319–324. https://doi.org/10.1097/WNR.0b013e3283229b52

Schupp, H. T., Junghöfer, M., Weike, A. I., & Hamm, A. O. (2004). The selective processing of briefly presented affective pictures: An ERP analysis. Psychophysiology, 41(3), 441–449. https://doi.org/10.1111/j.1469-8986.2004.00174.x

Setz, C., Arnrich, B., Schumm, J., La Marca, R., Troster, G., & Ehlert, U. (2010). Discriminating Stress From Cognitive Load Using a Wearable EDA Device. IEEE Transactions on Information Technology in Biomedicine, 14(2), 410–417. https://doi.org/10.1109/TITB.2009.2036164

Squire, L. R. (2017). Memory for relations in the short term and the long term after medial temporal lobe damage. Hippocampus, 27(5), 608–612. https://doi.org/10.1002/hipo.22716

Squire, L. R., & Dede, A. J. O. (2015). Conscious and Unconscious Memory Systems. Cold Spring Harbor Perspectives in Biology, 7(3), a021667. https://doi.org/10.1101/cshperspect.a021667

Straub, E., Kiesel, A., & Dignath, D. (2020). Cognitive control of emotional distraction–valence-specific or general? Cognition and Emotion, 34(4), 807–821. https://doi.org/10.1080/02699931.2019.1666799

Suzuki, W. A. (2003). Declarative versus episodic: Two theories put to the test. Neuron, 38(1), 5–7. https://doi.org/10.1016/S0896-6273(03)00202-2

Taylor, G. S., & Schmidt, C. (2012). Empirical evaluation of the Emotiv EPOC BCI headset for the detection of mental actions. Proceedings of the Human Factors and Ergonomics Society, 193–197. https://doi.org/10.1177/1071181312561017

Thibodeau, R., Jorgensen, R. S., & Kim, S. (2006). Depression, anxiety, and resting frontal EEG asymmetry: A meta-analytic review. Journal of Abnormal Psychology, 115(4), 715–729. https://doi.org/10.1037/0021-843X.115.4.715

Verbruggen, F., & De Houwer, J. (2007). Do emotional stimuli interfere with response inhibition? Evidence from the stop signal paradigm.

Cognition & Emotion, 21(2), 391–403. https://doi.org/10.1080/02699930600625081

Walker, F. R., Thomson, A., Pfingst, K., Vlemincx, E., Aidman, E., & Nalivaiko, E. (2019). Habituation of the electrodermal response – A biological correlate of resilience? PLOS ONE, 14(1), e0210078. https://doi.org/10.1371/journal.pone.0210078

Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54(6), 1063–1070. https://doi.org/10.1037/0022-3514.54.6.1063

Wilie, B., Vincentio, K., Winata, G. I., Cahyawijaya, S., Li, X., Lim, Z. Y., Soleman, S., Mahendra, R., Fung, P., Bahar, S., & Purwarianti, A. (2020). IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding. http://arxiv.org/abs/2009.05387

Winkler, I., Jäger, M., Mihajlović, V., & Tsoneva, T. (2010). Frontal EEG Asymmetry based classification of emotional valence using common spatial patterns. World Academy of Science, Engineering and Technology, 70, 373–378.

Yusainy, C. Al. (2017). Feeling Full or Empty Inside? Peran Perbedaan Individual dalam Struktur Pengalaman Afektif. Jurnal Psikologi, 44(1), 1. https://doi.org/10.22146/jpsi.18377



DOI: https://doi.org/10.22146/jpsi.74145

Article Metrics

Abstract views : 2674 | views : 1826

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Jurnal Psikologi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons LicenseJurnal Psikologi (jpsi) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.