Application of NAA and BA to Calotropis gigantea (L.) W.T. Aiton in vitro
Muji Rahayu(1*), Tyas Alivia Wulandari(2), Amalia Tetrani Sakya(3), Andriyana Setyawati(4), Sri Hartati(5), Samanhudi Samanhudi(6)
(1) Agrotechnology, Faculty of Agriculture, Universitas Sebelas Maret
(2) Agrotechnology, Faculty of Agriculture, Universitas Sebelas Maret
(3) Agrotechnology, Faculty of Agriculture, Universitas Sebelas Maret
(4) Agrotechnology, Faculty of Agriculture, Universitas Sebelas Maret
(5) Agrotechnology, Faculty of Agriculture, Universitas Sebelas Maret
(6) Agrotechnology, Faculty of Agriculture, Universitas Sebelas Maret
(*) Corresponding Author
Abstract
Crown flower (Calotropis gigantea (L.)) is a weed plant potentially to be used as raw material for textile fibers yet the utilization is not optimal. Efforts to optimize the utilization of C. gigantea are needed. This research aimed to determine the appropriate concentration of plant growth regulators, including NAA (Naphthalene Acetic Acid) and BA (Benzyl Adenine) to stimulate optimal growth of C. gigantea to be used as the basis for in vitro propagation of C. gigantea. The research was arranged in a completely randomized design (CRD). Explants were planted on Murashige and Skoog (MS) medium with various concentrations of NAA (0; 0.5; 1; 1.5; and 2 ppm) and BA (0; 1; 2; 3; and 4 ppm). Based on the research result, the addition of 3 ppm BA followed by increasing the concentration of NAA to 1.5 ppm could increase the number of C. gigantea shoots, and giving 1 ppm BA followed by adding 1.5 to 2 ppm NAA increased shoot height. The best plantlet response was found in media with 0 ppm NAA and 4 ppm BA, which could produce an optimal shoot height of 5.9 cm and a large number of shoots of 5.67 shoots. Increasing NAA concentration retarded root formation and reduced the root length and number of leaves, while the medium without NAA gave the earliest root emergence of 11 days after planting, the number of leaves of 20 strands, and the longest root of 10.9 cm. Applying a single substance BA did not accelerate all the variables observed.
Keywords
Full Text:
PDFReferences
Adugna, A. Y., Feyissa, T., and Tasew, F. S. (2020). Optimization of growth regulators on in vitro propagation of Moringa stenopetala from shoot explants. BMC Biotechnology, 20(1), pp. 1–10.
Ahmad, W. (2020). Preliminary phytochemical, antimicrobial and photochemical study of Calotropis gigantea leaf extract. Current Chemistry Letters, 9(3), pp. 105–112.
Agustina, M., Maisura, M., and Handayani, R. S. (2020). The Effect of Different Seed Cutting Treatments and Concentrations of BAP for the Successful In Vitro Micrografting of Mangosteen (Garcinia mangostana L.). Journal of Tropical Horticulture, 3(1), pp. 1–5.
Akbar, A., Eny, F., Sapto, I., Toni, H. (2017). Induksi tunas, multiplikasi dan perakaran Gyrinops versteegii (gilg.) Domke secara in vitro. J Pemuliaan Tanaman Hutan, 11(1), pp. 1–13.
Cui, Y., Cheng, L., Shan, X., Fan, W., and Gigantea, C. (2017). Correlation between Pod Shape Traits and Its Fiber Quality of Wild Calotropis Gigantea Correlation between Pod Shape Traits and Its Fiber Quality of Wild. Journal of Natural Fibers, 14(1), pp. 1–9.
Desta, B. and Amare, G. (2021). Paclobutrazol as a plant growth regulator. Chemical and Biological Technologies in Agriculture, 8(1), pp. 1–15.
Dubey, S. M., Serre, N. B. C., Oulehlová, D., Vittal, P., and Fendrych, M. (2021). No time for transcription—rapid Auxin responses in plants. Cold Spring Harbor Perspectives in Medicine, 11(7).
Faisal, M., Ahmad, N., Anis, M., Alatar, A. A., and Qahtan, A. A. (2018). Auxin-cytokinin synergism in vitro for producing genetically stable plants of Ruta graveolens using shoot tip meristems. Saudi Journal of Biological Sciences, 25(2), pp. 273–277.
Faradilla, M., and Maysarah, H. (2019). Potensi Biduri (Calotropis gigantea (L.) W.T. Aiton) sebagai Tanaman Obat. Ilmu Kefarmasian Indonesia, 17(2), pp. 246–250.
Gallei, M., Luschnig, C., and Friml, J. (2020). Auxin signalling in growth: Schrödinger’s cat out of the bag. Current Opinion in Plant Biology, 53, pp. 43–49.
Grossman, M., Freeborn, J., Scoggins, H., and Latimer, J. (2012). Benzyladenine increases branching but reduces root growth of herbaceous perennial liners. HortScience, 47(8), pp. 1085–1090.
Haida, Z., Nakasha, J. J., and Hakiman, M. (2020). In vitro responses of plant growth factors on growth, yield, phenolics content and antioxidant activities of Clinacanthus nutans (Sabah snake grass). Plants, 9(8), pp. 1–17.
Jiang, X., Cheng, L., Yu, J., Wang, Q., Stojanovska, E., and Xu, S. (2012). Relationship between akund fibers’ carding and sliver quality. Advanced Materials Research, 478, pp. 2014–2019.
Jing, H., and Strader, L. C. (2019). Interplay of auxin and cytokinin in lateral root development. International Journal of Molecular Sciences, 20(3), 486.
Juras, M.C.R., Jackeline, J., Rosete, P., et al. (2019). In vitro culture and acclimatization of Cattleya xanthina (Orchidaceae), an endangered orchid of the brazilian atlantic rainforest abstract. Rodriguesia, 70, pp. 1–11.
Kalve, S., Sizani, B. L., Markakis, M. N., Helsmoortel, C., Vandeweyer, G., Laukens, K., Sommen, M., Naulaerts, S., Vissenberg, K., Prinsen, E., and Beemster, G. T. S. (2020). Osmotic stress inhibits leaf growth of Arabidopsis thaliana by enhancing ARF-mediated auxin responses. New Phytologist, 226(6), 1766–1780.
Karimah, A., Ridho, M. R., Munawar, S. S., Adi, D. S., Ismadi, Damayanti, R., Subiyanto, B., Fatriasari, W., and Fudholi, A. (2021). A review on natural fibers for development of eco-friendly bio-composite: characteristics, and utilizations. Journal of Materials Research and Technology, 13, pp. 2442–2458.
Karimpour, S., Davarynejad, G., ZakiAGhl, M., and Safarnejad, M. (2020). Optimization of plant growth regulators for in vitro shoot proliferation of apple cv. ʽAbbasiʼ using response surface method.pdf. Journal of Plant Physiology and Breeding, 10(1), pp. 111–125.
Kaviani, B., Sedaghathoor, S., Motlagh, M. R. S., and Rouhi, S. (2019). Influence of plant growth regulators (BA, TDZ, 2-iP and NAA) on micropropagation of Aglaonema widuri. Iranian Journal of Plant Physiology, 9(2), pp. 2709–2718.
Latifah R, Titien S, Netty E. (2017). Optimasi pertumbuhan plantlet Cattleya melalui kombinasi kekuatan media murashige-skoog dan bahan organik. Agriprima : J of Applied Agricultural Sciences, 1(1), pp. 59–62.
Lestari, N.K.D, Deswiniyanti, N.W., Astarini, I.A., and Arpiwi, N.L.M. (2019). Callus and shoot induction of leaf culture Lilium longiflorum with NAA and BAP. Nusantara Bioscience, 11(2), pp. 162–165.
Mangena, P. (2020). Benzyl adenine in plant tissue culture- succinct analysis of the overall influence in soybean [Glycine max (L.) Merrill.] seed and shoot culture establishment. Journal of Biotech Research, 11, pp. 23–34.
Martins, J. P. R., Rodrigues, L. C. A., Santos, E. R., Batista, B. G., Gontijo, A. B. P. L., and Falqueto, A. R. (2018). Anatomy and photosystem II activity of in vitro grown Aechmea blanchetiana as affected by 1-naphthaleneacetic acid. Biologia Plantarum, 62(2), pp. 211–221.
Mohit, and Sirohi, S. P. S. (2018). Plant Tissue Culture Techniques in Crop Improvement. International Journal of Current Research, 10(10), pp. 74067–74070.
Monfort, L. E. F., Bertolucci, S. K. V., Lima, A. F., de Carvalho, A. A., Mohammed, A., Blank, A. F., and Pinto, J. E. B. P. (2018). Effects of plant growth regulators, different culture media and strength MS on production of volatile fraction composition in shoot cultures of Ocimum basilicum. Industrial Crops and Products, 116, pp. 231–239.
Naaz, A., Hussain, S. A., Anis, M., and Alatar, A. A. (2019). Meta-topolin improved micropropagation in Syzygium cumini and acclimatization to ex vitro conditions. Biologia Plantarum, 63, pp. 174–182.
Narayanasamy, P., Balasundar, P., Senthil, S., Sanjay, M. R., Siengchin, S., Khan, A., and Asiri, A. M. (2020). Characterization of a novel natural cellulosic fiber from Calotropis gigantea fruit bunch for ecofriendly polymer composites. International Journal of Biological Macromolecules, 150, pp. 793–801.
Ozkan, Y., Altuntas, E., Ozturk, B., Yildiz, K., and Saracoglu, O. (2012). The effect of NAA (1-naphthalene acetic acid) and avg (aminoethoxyvinylglycine) on physical, chemical, colour and mechanical properties of braeburn apple. International Journal of Food Engineering, 8(3), pp. 1–18.
Pramita, A. D., Kristanti, A. N., Sugiharto, Utami, E. S. W., and Manuhara, Y. S. W. (2018). Production of biomass and flavonoid of Gynura procumbens (Lour.) Merr shoots culture in temporary immersion system. Journal of Genetic Engineering and Biotechnology, 16(2), pp. 639–643.
Sakya, A. T. and Samanhudi, M. M. P. (2022). Vegetative growth of Biduri (Calotropis Gigantea) on mycorrhiza and azolla application. IOP Conference Series: Earth and Environmental Science, pp. 1–6.
Sessou, A. F., Kahia, J. W., Houngue, J. A., Ateka, E. M., Dadjo, C., and Ahanhanzo, C. (2020). In vitro propagation of three mosaic disease resistant cassava cultivars. BMC Biotechnology, 20(1), pp. 1–13.
Sharma, M., Singh, D., Saksena, H. B., Sharma, M., Tiwari, A., Awasthi, P., Botta, H. K., Shukla, B. N., and Laxmi, A. (2021). Understanding the intricate web of phytohormone signalling in modulating root system architecture. International Journal of Molecular Sciences, 22(11), 5508.
Shnaishel, S. J. (2019). International Journal of Agriculture and Environmental Research PLANT TISSUE. International Journal of Agriculture and Environmental Research, 7(3), pp. 375–385.
Singh, C. R. (2018). Review on Problems and its Remedy in Plant Tissue Culture. Asian Journal of Biological Sciences, 11(4), pp. 165–172.
Srilestari, R. (2020). Induction Of Banana Roots In Various Media And In Vitro Growth Regulators. Proceeding on Engineering and Science Series (ESS), 1(1), pp. 295–300.
Sugiyono, S., Dewi, P. S., and Prasetyo, R. (2021). Banana Cultivars Microshoot Induction and Plantlet Formation Using Cytokinin and Auxin. Caraka Tani: Journal of Sustainable Agriculture, 36(2), 249–258.
Taha, H., Ghazy, U. M., Gabr, A. M. M., EL-Kazzaz, A. A. A., Ahmed, E. A. M. M., and Haggag, K. M. (2020). Optimization of in vitro culture conditions affecting propagation of mulberry plant. Bulletin of the National Research Centre, 44(1).
Talitha, O., Samanhudi, S., Setyawati, A., Rahayu, M., and Sakya, A. T. (2022). The Effect of Growth Concentration on In Vitro Shoot Multiplication of Crown Flower (Calotropis gigantea). Plant Breeding and Biotechnology, 10(4), pp. 244–256.
Tamyiz, M., Prayoga, L., Prasetyo, R., Murchie, E. H., and Sugiyono. (2022). Improving Agarwood (Aquilaria malaccensis Lamk.) Plantlet Formation Using Various Types and Concentrations of Auxins. Caraka Tani: Journal of Sustainable Agriculture, 37(1), pp. 142–151.
Torres-Silva, G., Resende, S. V., Lima-Brito, A., Bezerra, H. B., de Santana, J. R. F., and Schnadelbach, A. S. (2018). In vitro shoot production, morphological alterations and genetic instability of Melocactus glaucescens (Cactaceae), an endangered species endemic to eastern Brazil. South African Journal of Botany, 115, pp. 100–107.
Uche, O. C., Ejiofor, A. P., and Eziuche, O. C. (2016). Comparative Growth Rates of Treculia africana Decne: Embryo in Varied Strengths of Murashige and Skoog Basal Medium. International Journal of Agricultural and Biosystems Engineering, 10(9), pp. 564–567.
Xiao, W., Niu, B., Yu, M., Sun, C., Wang, L., Zhou, L., and Zheng, Y. (2021). Fabrication of foam-like oil sorbent from polylactic acid and Calotropis gigantea fiber for effective oil absorption. Journal of Cleaner Production, 278, 123507.
Younas, A., Yousaf, Z., Rashid, M., and Riaz, N. (2020). Nanoagronomy. In Nanoagronomy (Issue May).
Zhao, Z., Zheng, Z., Chen, P., Zhang, H., Yang, C., Wang, X., and Li, G. (2019). Pre-treatment of Calotropis gigantea fibers with functional plasticizing and toughening auxiliary agents. Textile Research Journal, 89(19–20), pp. 3997–4006.
DOI: https://doi.org/10.22146/ipas.83664
Article Metrics
Abstract views : 1278 | views : 925Refbacks
- There are currently no refbacks.
Ilmu Pertanian (Agricultural Science) ISSN 0126-4214 (print), ISSN 2527-7162 (online) is published by Faculty of Agriculture Universitas Gadjah Mada collaboration with Perhimpunan Sarjana Pertanian Indonesia (PISPI) and licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.