Pengaruh Cekaman Kekeringan terhadap Perilaku Fisiologis dan Pertumbuhan Bibit Black Locust (Robinia pseudoacacia)

https://doi.org/10.22146/jik.10183

Novita Anggraini(1*), Eny Faridah(2), Sapto Indrioko(3)

(1) Bagian Silvikultur, Fakultas Kehutanan, Universitas Gadjah Mada Jl. Agro No.1 Bulaksumur, Sleman 55281
(2) Bagian Silvikultur, Fakultas Kehutanan, Universitas Gadjah Mada Jl. Agro No.1 Bulaksumur, Sleman 55281
(3) Bagian Silvikultur, Fakultas Kehutanan, Universitas Gadjah Mada Jl. Agro No.1 Bulaksumur, Sleman 55281
(*) Corresponding Author

Abstract


Black locust (Robinia pseudoacacia) merupakan tanaman asli Amerika Utara dan telah tersebar ke Eropa dan Asia serta menjadi salah satu spesies yang digunakan untuk rehabilitasi lahan semiarid dan arid. Walau demikian, kemampuan adaptasi black locust pada daerah persebarannya cukup meresahkan disebabkan jenis ini memiliki potensi invasif yang cenderung menekan pertumbuhan tanaman asli setempat. Tujuan penelitian ini adalah untuk mempelajari pengaruh cekaman kekeringan berupa volume penyiraman dan interval penyiraman terhadap perilaku fisiologis dan pertumbuhan bibit black locust, serta untuk menganalisis tingkat toleransi black locust terhadap kekeringan melalui karakter efisiensi penggunaan air (WUE) dan kandungan klorofil. Perlakuan volume penyiraman berupa kapasitas lapang 30-40 % mewakili kondisi kekeringan dan kapasitas lapang 70-80 % mewakili kondisi air yang memadai, sementara periode interval penyiraman adalah 1 hari, 3 hari dan 7 hari. Metode analisis yang digunakan ialah analisis tren. Hasil yang diperoleh pada penelitian ini adalah semakin rendah volume penyiraman (KL 30-40 %) dan semakin lama interval penyiraman (ke 7 hari) maka fotosintesis, transpirasi, konduktansi stomata, serta pertumbuhan (tinggi, diameter, berat kering tajuk dan akar) akan semakin rendah, sementara untuk WUE dan kandungan klorofil semakin tinggi. Peningkatan WUE dan kandungan klorofil merupakan dua indikator bahwa black locust mampu beradaptasi (toleran) pada kondisi cekaman kekeringan. Dengan begitu, dapat disimpulkan bahwa penggunaan black locust dalam upaya reklamasi lahan kering perlu didahului studi khusus dan pertimbangan yang matang agar tidak membawa dampak invasif pada kehidupan mendatang.

Kata kunci: black locust, cekaman kekeringan, jenis invasif, water use efficiency, kandungan klorofil.

 

Effect of drought stress on physiological behavior and growth ofblack locust (Robinia pseudoacacia) seedlings

Abstract

Black locust (Robinia pseudoacacia) is a native species from North America and it has spread to Europe and Asia. Black locust is also one species used for land rehabilitation in semiarid and arid areas. However, adaptability of black locust on their distribution area is quite disturbing due to its invasive potential that tends to suppress the growth of native plants. The purpose of this study is to examine the effect of drought stress through watering volume and watering intervals treatments on physiological behavior and growth of black locust seedlings, and to analyze the level of black locust on drought tolerance through water use efficiency (WUE) character and chlorophyll content. The watering volumes are 30-40 % of field capacity representing drought conditions and 70-80 % of field capacity representing good water conditions, while the watering intervals are 1, 3 and 7 days. Trend analysis is used to analyze the data. The results indicate that the lower watering volume (30-40 %) and the longer the watering interval (for 7 days), the lower the photosynthesis and transpiration rate, stomatal conductance and growth (height, diameter, shoot dry weight and root) of plants, but the higher the WUE and chlorophyll content. Increasing WUE and chlorophyll content are two indicators indicating that black locust is able to adapt (tolerant) to drought stress situations. Therefore, the use of black locust for dry land reclamation requires special attention and careful strategy to avoid its invasive impact in the future.


Keywords


black locust; drought; invasive species; water use efficiency; chlorophyll content

Full Text:

PDF


References

  1. Anjum SA, Xie X., Wang L, Saleem MF, Man C, & Lei W. 2011a. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research 6(9), 2026-2032.
  2. Anjum SA, Wang LC, Farooq M, Hussain M, Xue LL, & Zou CM. 2011. Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J. Agronomy & Crop Science 197, 177-185.
  3. Chaves M M, Pereira JS, Maroco J, Rodriggues ML, Ricardo CPP, Osorio ML, Calvarho I, Faria T, & Pinheiro C. 2002. How plants cope with water stress in the field? Photosynthesis and growth. Annals of Botany 89(7), 907-916.
  4. Dreiss LM & Volin JC. 2013. Influence of leaf phenology and site nitrogen on invasive species establishment in temperate deciduous forest understories. Forests Ecology and Management 296, 1-8.
  5. Enescu CM & Danescu A. 2013. Black locust (Robinia pseudoacacia L.) – An invasif neophyte in the conventional land reclamation flora in Romania. Bulletin of the Transilvania University of Braso 6(55), 23-30.
  6. Farooq M, Wahid A, Kobayashi N, Fujita D, & Basra SMA. 2009. Plant drought stress: Effects, mechanism and management. Agron.Sustain.Dev. 29, 185-212.
  7. Farquhar GD, Wong SC, Evans JR. & Hubick KT. 1989. Photosynthesis and gas exchange. Dalam : Plants under Stress. Jones HG, Flowers TJ, & Jones MB (Ed). Cambridge University Press, New York. 46-93.
  8. Gomez TD & Wagner MR. 2001. Culture and use of black locust. HortTecnology. <http://horttech.ashspublications.org/content/11/2/279.full.pdf+html> (1 Maret 2014).
  9. Gonzalez-Garcia S, Gasol CM, Moreira MT, Gabarrell X, Pons JRI, & Feijoo G. 2011. Environmental assesment of black locust (Robinia pseudoacacia L.)-based ethanol as potential transport fuel. Int. J. Life Cycle Assess 16, 465-477.
  10. Grant OM. 2012. Understanding and exploiting the impact of drought stress on plant physiology. Dalam : Abiotic stress responses in plants. Ahmad P & Prasad MNV (Ed). Springer, New York. 89-104.
  11. Jung SC, Matsushita N, Wu BY, Kondo N, Shiraishi A, & Hogetsu T. 2009. Reproduction of a Robinia pseudoacacia population in a coastal Pinus thunbergii windbreak along the Kujukurihama Coast Japan. J For Res 14,101-110.
  12. Kramer PJ & Kozlowski TT. 1979. Photosynthesis to the importance of water and the process of transpiration, Dalam : Physiology of Woody Plants. Academic Press, London. 163-444.
  13. Lakitan B. 2013. Dasar-Dasar Fisiologi Tumbuhan. Rajawali Press, Jakarta. 35-62. Lee CS, Cho HJ, & Yi H. Stand dynamics of introduced black locust (Robinia pseudoacacia L.) plantation under different disturbance regimes in Korea. 2004. Forest Ecology and Management 189, 281–293.
  14. Li KR, Wang HH, Han G, Wang QJ, & Fan J. 2008. Effects of brassinoline on the survival, growth, and drought resistance of Robinia pseudoacacia seedlings under water-stress. New Forests 35, 255-266.
  15. Liu X, Fan Y, Long J, Wei R, Kjelgren R, Gong C & Zhao J. 2012. Effects of soils water and nitrogen availability on photosynthesis and water use efficiency of Robinia pseudoacacia seedlings. Journal of Environmental Sciences 25(3), 585-595.
  16. Mahajan S & Tuteja N. 2005. Cold, salinity and drought stress: An overview. Archives of biochemistry and biophysics 444, 139-158.
  17. Manavalan LP, & Nguyen HT. 2012. Drought tolerance in crops: Physiology to genomics. Dalam : Plant Stress Physiology. Shabala S (Ed). UK: CAB International, 1-23.
  18. Masaka K, Yamada K, KoyamaY, Sato H, Kon H & Torita H. 2010. Changes in size of soil seed bank in Robinia pseudoacacia L. (Leguminosae), an exotic tall tree species in Japan: impacts of stand growth and apicultural Utilization. Forest Ecology and Management 260, 780-786.
  19. Mazher AAM, Yassen AA, & Zaghloul SM. 2007. Influence of foliar application of potassium on growth and chemical composition of Bauhia variegate seedlings under different irrigation intervals. World Journal of Agriculture Sciences 3(1), 23-31.
  20. Meng F, Peng M, Pang H, & Huang F. 2014. Comparison of photosynthesis and leaf ultrastructure on two black locust (Robinia pseudoacacia L.). Biochemical Systematics and Ecology 55, 170-175.
  21. Mensah JK, Obadoni BO, Eruotor PG, & Onome-Irieguna F. 2006. Simulated flooding and drought effects on germination, growth, and yield parameters of sesame (Sesamum indicum L. African Journal of Biotechnology 5 (13),1249-1253.
  22. Micco VD & Aronne G. 2012. Morpho-anatomical traits for plant adaptation to drought. Dalam : Plant Responses to Drought Stress from Morphological to Molecular Features. Aroca R (Ed). Springer-Verlag Berlin Heidelberg, Germany. 37-61.
  23. Motta R, Nola P, & Berretti R. 2009. The rise and fall of black locust (Robinia pseudoacacia L.) in the “Siro Negri” forest reserve (Lombardy, Italy): lessons and future uncertainties. Ann. For. Sci. 66, 410.
  24. Mona & Amin A. 2013. Study of the fertigation requirements for some woody trees. Journal of Applied Sciences Research 9(1), 284-293.
  25. Moshki A & Lamersdorf NP. 2011. Growth and nutrient status of introduced black locust (Robinia pseudoacacia L.) afforestation in arid and semi arid areas of Iran. Research Journal of Environmental Sciences 5, 259-268.
  26. Nilsen ET & Orcutt DM. 1996. The physiology of plants under stress: Abiotic Factors. U.S.: John Wiley and Sons.Inc. 279-357.
  27. Nishizawa T. 2013. Method of chlorophyll measurement. Direct Study. Laboratory of Horticulture. Yamagata University. Japan.
  28. Nejad TS, Bakhshande A, Nasab SB, & Payande K. 2010. Effect of drought oon corn root growth. Report and Opinion. <http://www.sciencepub.net>.
  29. Nonami H. 1998. Plant water relations and control of cell elongation at low water potentials. Journal of Plant Research 111, 373-382.
  30. Novriyanti E, Watanabe M, Makoto K, Takeda T, Hashidoko Y, & Koike T. 2012. Photosynthetic nitrogen- and water-use efficiency of acacia and eucalypt seedlings as afforestation species. Photosynthetica 50(2), 273-281.
  31. Okon JE. 2013. Effect of water stress on some growth aspects of two varieties of cowpea, Vigna unguiculata (L.) Walp Fabaceae. Bull. Env. Pharmacol. Life Sci. 2(5), 69-74.
  32. Pallardy SG. 2008. Transpiration and plant water balance. Dalam Physiology of Woody Plants. 3 rd edition. Elsevier-London, UK. 25-366.
  33. Rahmonov O. 2009. The chemical composition of plant litter of black locust (Robinia pseudoacacia L.) and its ecological role in sandy ecosystems. Acta Ecologica Sinica 29, 237-243.
  34. Redei K, Csiha I, Keseru Z, Vegh AK, & Gyori J. 2012. The silviculture of black locust (Robinia pseudoacacia L.) in Hungary : A Review. SEEFOR 2(2), 101-107.
  35. Sabo AE. 2000. Robinia pseudoacacia invasions and control in North America and Europe. Restoration and reclamation review. Student On-Line Journal, 6(3), 1-9.
  36. Sanches RFE & Silva EAD. 2013. Changes in leaf water potential and photosynthesis of Bauhinia forficata Link under water deficit and after rehydration. Hoehnea 40(1), 181-190.
  37. Souza GM, Olivera RFD & Mendes VJ. 2004. Temporal dynamics of stomatal conductance of plants under water deficit: Can homeostasis be improved by more complex dynamics? Brazilian Archives of Biology and Technology, an International Journal 47(3), 423-431.
  38. Taiz, L & Zeiger E. 2002. Plant Physiology. U.S.: Sinauer Associates. 33-67.
  39. Taniguchi T, Tamai S, Yamanaka N & Futai K. 2007. Inhibition of the regeneration of Japanese Black Pine (Pinus thunbergii) by black locust (Robinia pseudoacacia) in Coastal Sand Dunes. J. For. Res 12, 350-357.
  40. Vítková M, Tonika J, & Müllerová J. 2015. Black locust: Successful invader of a wide range of soil conditions. Science of the Total Enviromental 505, 315-328.
  41. Wang RZ. 2005. C3 and C4 photosynthetic pathways and life form types for native species from agro-forestry region, Northeastern China. Photosynthetica 43(4), 535-549.
  42. Xu F, Guo W, Wang R, Xu W, Du N, & Wang Y. 2009. Leaf movement and photosynthetic plasticity of black locust (Robinia pseudoacacia) alleviate stress under different light and water conditions. Acta Physiol Plant. 31, 553-563.
  43. Yang Y, Tang M, Sulpice R, Chen H, Tian S & Ban Y. 2014. Arbuscular mycorrhizal fungi alter fractal dimension characteristics of Robinia pseudoacacia L. seedlings through regulating plant growth, leaf water status, photosynthesis, and nutrient concentration under drought stress. J. Plant growth Regul. 33(3), 612-625.
  44. Zeid IM & Shedeed ZA. 2006. Response of alfafa to putrescine treatment under drought stress. Biologia Plantarum 50(4), 635-640.
  45. Zhu XC, Song FB, Liu SQ, Liu TD & Zhou X. 2012. Arbuscular mycorrhizae improves photosynthesis and water status of Zea mays L. under drought stress. Plant Soil Environ. 58(4), 186-191.



DOI: https://doi.org/10.22146/jik.10183

Article Metrics

Abstract views : 36915 | views : 114765

Refbacks

  • There are currently no refbacks.




Copyright (c) 2015 Jurnal Ilmu Kehutanan

License URL: https://creativecommons.org/licenses/by-nc-sa/4.0/


© Editorial Board Jurnal Ilmu Kehutanan
Faculty of Forestry, Universitas Gadjah Mada
Building D 2nd floor
Jl. Agro No 1, Bulaksumur, Sleman 55281
Phone. +62-274-512102, +62-274-550541, +62-274-6491420
Fax. +62-274-550541 E-mail : jik@ugm.ac.id
former website : jurnal.ugm.ac.id/jikfkt/
new website : jurnal.ugm.ac.id/v3/jik/

 

Indexed by:

 

Jurnal Ilmu Kehutanan is under the license of Creative Commons Attribution-ShareAlike 4.0 International