Examining the spatio-temporal relationship between LST, NDVI, NDBI and LULC change of Pachhua dun, Dehradun, Uttarakhand (India)
Rahul Thapa(1*), Dr. Vijay Bahuguna(2), Prateek Negi(3), Praveen Singh Rana(4), Pinki Kataria(5), Dr. Geeta Rawat(6), Muhammad Yasir(7), Tania Sharma(8)
(1) D.B.S.(P.G.) College, Dehradun (Uttarakhand)
(2) D.B.S.(P.G.)College, Dehradun
(3) Pestle Weed College of Information Technology, Dehradun, Uttarakhand
(4) D.B.S.(P.G.)College, Dehradun
(5) D.B.S.(P.G.)College, Dehradun(Uttarakhand)
(6) SGRR University, Dehradun, Uttarakhand (India).
(7) China University of Petroleum.
(8) D.B.S.(P.G.) College, Dehradun(Uttarakhand)
(*) Corresponding Author
Abstract
Recent climate change has had a negative impact on a wide range of human and natural systems, and it is clear that humans influence the climate. Because, as anthropogenic influence increases, the heat output from the land surface increases, speeding up the rate of climate change. In this regard, the use of RS and GIS techniques has provided various opportunities for research to examine these changes. The current analysis is based on the Landsat 1989, and 2020. Over the study period of 31 years, the built-up regions increased in size from 44.23 km2 to 154.56 km2. Whereas, the area covered by scrubland, water bodies, and vegetation cover has significantly decreased. The LST study further supports the outcome, showing that the mean and standard deviation increased from 14.81°C±1.32(1989) to 18.82°C±1.57(2020). The study also made an effort to examine how LULC affected LST; while vegetation cover has consistently helped to lower mean LST, built-up areas and scrubland are the main drivers of mean LST rise. The LST and NDBI revealed a positive correlation, while the NDVI/SLOPE and LST showed a negative correlation. Subsequently, the multiple linear regression (MLR) models concluded that the BUAs has evolved into a serious threat to the increase in LST, but increase in vegetation cover and SLOPE would result in slight decrease in LST. the study recommended that the government create policies that restrict future land encroachment and conversion, notably of forested area and water bodies, and make an immediate effort to increase the quantity and quality of urban green cover in the study area. So that we may, respectively, minimize the potential hazard posed by future LST rise and LULC change.
Keywords
Full Text:
PDFReferences
Aakriti, G., & Ram, B. S. (2015). Analysis of Urban Heat Island (UHI) in Relation to Normalized Difference Vegetation Index (NDVI): A Comparative Study of Delhi and Mumbai. ResearchGate, 2(2). https://doi.org/0.3390/environments2020125
Agarwal, A., Soni, K. K., & Rawat, M. S. S. (2019). Monitoring Land Use Land Cover Change for Dehradun District of Uttarakhand from 2009-2019. International Journal of Advanced Remote Sensing and GIS, 8(1), Article 1.
Ahmad, A., & Quegan, S. (2012). Analysis of Maximum Likelihood classification technique on Landsat 5 TM satellite data of tropical land covers. 2012 IEEE International Conference on Control System, Computing and Engineering, 280–285. https://doi.org/10.1109/ICCSCE.2012.6487156
Amanollahi, J., Tzanis, C., Ramli, M. F., & Abdullah, A. M. (2016). Urban heat evolution in a tropical area utilizing Landsat imagery. Atmospheric Research, 167, 175–182. https://doi.org/10.1016/j.atmosres.2015.07.019
Amiri, R., Weng, Q., Alimohammadi, A., & Alavipanah, S. K. (2009). Spatial–temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran. Remote Sensing of Environment, 113(12), 2606–2617. https://doi.org/10.1016/j.rse.2009.07.021
author, D. L. C., Mausel, P., Brondízio, E., & Moran, E. (2004). Change detection techniques. International Journal of Remote Sensing, 25(12), 2365–2401. https://doi.org/10.1080/0143116031000139863
Awuh, M. E., Japhets, P. O., Officha, M. C., Okolie, A. O., & Enete, I. C. (2019). A Correlation Analysis of the Relationship between Land Use and Land Cover/Land Surface Temperature in Abuja Municipal, FCT, Nigeria. Journal of Geographic Information System, 11(1), Article 1. https://doi.org/10.4236/jgis.2019.111004
Balew, A., & Korme, T. (2020). Monitoring land surface temperature in Bahir Dar city and its surrounding using Landsat images. The Egyptian Journal of Remote Sensing and Space Science, 23. https://doi.org/10.1016/j.ejrs.2020.02.001
Bhat, P. A., Shafiq, M. ul, Mir, A. A., & Ahmed, P. (2017). Urban sprawl and its impact on landuse/land cover dynamics of Dehradun City, India. International Journal of Sustainable Built Environment, 6(2), 513–521. https://doi.org/10.1016/j.ijsbe.2017.10.003
Carlson, T. N., & Ripley, D. A. (1997). On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment, 62(3), 241–252. https://doi.org/10.1016/S0034-4257(97)00104-1
Çetin, M. (2019). The effect of urban planning on urban formations determining bioclimatic comfort area’s effect using satellitia imagines on air quality: A case study of Bursa city. Air Quality, Atmosphere & Health, 12. https://doi.org/10.1007/s11869-019-00742-4
Chamundeeswari, J. (2013). Land Use/ Land Cover Change Detection Using Satellite Remote Sensing and Gis. 17, 1785–1787. https://doi.org/10.5829/idosi.mejsr.2013.17.12.112
Chen, L., Li, M., Huang, F., & Xu, S. (2013). Relationships of LST to NDBI and NDVI in Wuhan City based on Landsat ETM+ image. 2013 6th International Congress on Image and Signal Processing (CISP). https://doi.org/10.1109/CISP.2013.6745282
Chen, Z., Wang, W., & Fu, J. (2020). Vegetation response to precipitation anomalies under different climatic and biogeographical conditions in China. Scientific Reports, 10(1), 830. https://doi.org/10.1038/s41598-020-57910-1
Christopher, B. F., David, B. L., Halton A. Peters, & Nona, R. C. (2007). Feedbacks of Terrestrial Ecosystems to Climate Change | Annual Review of Environment and Resources. 32, 1–29. https://doi.org/10.1146/annurev.energy.32.053006.141119
Darius, P. (2017). Developments in Landsat Land Cover Classification Methods: A Review. 9(9). https://doi.org/10.3390/rs9090967
Dehradun Nagar Nigam. (2018). Population of Proposed Wards of Nagar Nigam Dehradun | District Dehradun | India. https://dehradun.nic.in/document/population-of-proposed-wards-of-nagar-nigam-dehradun/
Deng, Y., Wang, S., Bai, X., Tian, Y., Wu, L., Xiao, J., Chen, F., & Qian, Q. (2018). Relationship among land surface temperature and LUCC, NDVI in typical karst area. Scientific Reports, 8(1), 641. https://doi.org/10.1038/s41598-017-19088-x
Dewan, A. M., Yamaguchi, Y., & Ziaur Rahman, Md. (2012). Dynamics of land use/cover changes and the analysis of landscape fragmentation in Dhaka Metropolitan, Bangladesh. GeoJournal, 77(3), 315–330. https://doi.org/10.1007/s10708-010-9399-x
Fanan, U., Dalama, K. I., & Oluseyi, I. O. (n.d.). Journal of Ecology and The Natural Environment—Urban expansion and vegetal cover loss in and around nigeria’s federal capital city. Retrieved December 29, 2020, from https://academicjournals.org/journal/JENE/article-abstract/CE94A3B5892
Fatemi, M., & Narangifard, M. (2019). Monitoring LULC changes and its impact on the LST and NDVI in District 1 of Shiraz City. Arabian Journal of Geosciences, 12(4), 127. https://doi.org/10.1007/s12517-019-4259-6
Fattah, Md. A., Morshed, S. R., & Morshed, S. Y. (2021). Impacts of land use-based carbon emission pattern on surface temperature dynamics: Experience from the urban and suburban areas of Khulna, Bangladesh. Remote Sensing Applications: Society and Environment, 22, 100508. https://doi.org/10.1016/j.rsase.2021.100508
Gandhi, S. M., & Sarkar, B. C. (2016). Chapter 3—Reconnaissance and Prospecting. In S. M. Gandhi & B. C. Sarkar (Eds.), Essentials of Mineral Exploration and Evaluation (pp. 53–79). Elsevier. https://doi.org/10.1016/B978-0-12-805329-4.00010-7
Giri, C., Zhu, Z., & Reed, B. (2005). A comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets. In Remote Sensing of Environment (Vol. 94, Issue 1, p. 10). https://doi.org/10.1016/j.rse.2004.09.005
Goverment of Uttarakhand. (2022, July 22). Climate | District Dehradun | India. https://dehradun.nic.in/climate/
Guha, S., & Govil, H. (2020). Land surface temperature and normalized difference vegetation index relationship: A seasonal study on a tropical city. SN Applied Sciences, 2(10), 1661. https://doi.org/10.1007/s42452-020-03458-8
Guha, S., & Govil, H. (2021). COVID-19 lockdown effect on land surface temperature and normalized difference vegetation index. Geomatics, Natural Hazards and Risk, 12(1), 1082–1100. https://doi.org/10.1080/19475705.2021.1914197
Guha, S., Govil, H., & Diwan, P. (2020a). Monitoring LST-NDVI Relationship Using Premonsoon Landsat Datasets. 2020, 15. https://doi.org/10.1155/2020/4539684
Guha, S., Govil, H., & Diwan, P. (2020b). Monitoring LST-NDVI Relationship Using Premonsoon Landsat Datasets. Advances in Meteorology, 2020, e4539684. https://doi.org/10.1155/2020/4539684
Gupta, K. (n.d.). Unprecedented growth of Dehradun urban area: A spatio-temporal analysis. Retrieved June 23, 2021, from https://www.researchgate.net/publication/282334185_Unprecedented_growth_of_Dehradun_urban_area_a_spatio-temporal_analysis
Hassan, Z., Shabbir, R., Ahmad, S. S., Malik, A. H., Aziz, N., Butt, A., & Erum, S. (2016). Dynamics of land use and land cover change (LULCC) using geospatial techniques: A case study of Islamabad Pakistan. SpringerPlus, 5(1), 812. https://doi.org/10.1186/s40064-016-2414-z
Islam, K., & Islam, S. (2014). Application of Thermal Infrared Remote Sensing to Explore the Relationship between Land Use-Land Cover Changes and Urban Heat Island Effect: A Case Study of Khulna City. 6, 49–60.
Jalan, S., & Sharma, K. (2014). Spatio-temporal Assessment of Land Use/ Land Cover Dynamics and Urban Heat Island of Jaipur City using Satellite Data. XL(8). https://doi.org/10.5194/isprsarchives-XL-8-767-2014
Jana, C., Mandal, D., Shrimali, S. S., Alam, N. M., Kumar, R., Sena, D. R., & Kaushal, R. (2020a). Assessment of urban growth effects on green space and surface temperature in Doon Valley, Uttarakhand, India. Environmental Monitoring and Assessment, 192(4), 257. https://doi.org/10.1007/s10661-020-8184-7
Jana, C., Mandal, D., Shrimali, S. S., Alam, N. M., Kumar, R., Sena, D. R., & Kaushal, R. (2020b). Assessment of urban growth effects on green space and surface temperature in Doon Valley, Uttarakhand, India. Environmental Monitoring and Assessment, 192(4), 257. https://doi.org/10.1007/s10661-020-8184-7
J.C., P. (1990). Using spatial context in satellite data to infer regional scale evapotranspiration—IEEE Journals & Magazine. 28(5), 940–948. https://doi.org/10.1109/36.58983.
Jenness, J., & Wynne, J. J. (2005). Cohen’s Kappa and classification table metrics 2.0: An ArcView 3.x extension for accuracy assessment of spatially explicit models. Open-File Report OF 2005-1363. Flagstaff, AZ: U.S. Geological Survey, Southwest Biological Science Center. 86 p. https://www.fs.usda.gov/treesearch/pubs/25707
Jha, C. S., Dutt, C. B. S., & Bawa, K. S. (2000). Deforestation and land use changes in Western Ghats, India. Current Science, 79(2), 231–238.
Kumar, R., Mishra, V., Buzan, J., Kumar, R., Shindell, D., & Huber, M. (2017). Dominant control of agriculture and irrigation on urban heat island in India. Scientific Reports, 7(1), Article 1. https://doi.org/10.1038/s41598-017-14213-2
Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174.
Li, W., Cao, Q., Lang, K., & Wu, J. (2017). Linking potential heat source and sink to urban heat island: Heterogeneous effects of landscape pattern on land surface temperature. The Science of the Total Environment, 586, 457–465. https://doi.org/10.1016/j.scitotenv.2017.01.191
Lillesand, T., Kiefer, R. W., & Chipman, J. (2015). Remote Sensing and Image Interpretation. John Wiley & Sons.
Liu, L., & Zhang, Y. (2011). Urban Heat Island Analysis Using the Landsat TM Data and ASTER Data: A Case Study in Hong Kong. Remote Sensing, 3(7), Article 7. https://doi.org/10.3390/rs3071535
Lo, C. P., & Quattrochi, D. (2003). Land-Use and Land-Cover Change, Urban Heat Island Phenomenon, and Health Implications: A Remote Sensing Approach. Photogrammetric Engineering & Remote Sensing, 69, 1053–1063. https://doi.org/10.14358/PERS.69.9.1053
Lu, L., Weng, Q., Xiao, D., Guo, H., Li, Q., & Hui, W. (2020). Spatiotemporal Variation of Surface Urban Heat Islands in Relation to Land Cover Composition and Configuration: A Multi-Scale Case Study of Xi’an, China. Remote Sensing, 12(17), Article 17. https://doi.org/10.3390/rs12172713
Lv, Z., Liu, T., Zhang, Benediktsson, J. A., & Chen, Y. (2018). Land Cover Change Detection Based on Adaptive Contextual Information Using Bi-Temporal Remote Sensing Images. 10(6), 901. https://doi.org/10.3390/rs10060901
Macarof, P., & Florian, S. (2017). Comparasion of NDBI and NDVI as Indicators of Surface Urban Heat Island Effect in Landsat 8 Imagery: A Case Study of Iasi. Present Environment and Sustainable Development, 11. https://doi.org/10.1515/pesd-2017-0032
Malik, M. S., Shukla, J., & Mishra, S. N. (2019). Relationship of LST, NDBI and NDVI using landsat-8 data in Kandaihimmat watershed, Hoshangabad, India. Indian Journal of Geo-Marine Sciences, 48, 25–31.
Mallick, J., Kant, Y., & Bharath, B. D. (n.d.). Estimation of land surface temperature over Delhi using Landsat-7 ETM+. Retrieved December 30, 2020, from https://www.researchgate.net/publication/228895796_Estimation_of_land_surface_temperature_over_Delhi_using_Landsat-_ETM
Mishra, P. K., Rai, A., & Rai, S. C. (2020). Land use and land cover change detection using geospatial techniques in the Sikkim Himalaya, India. The Egyptian Journal of Remote Sensing and Space Science, 23(2), 133–143. https://doi.org/10.1016/j.ejrs.2019.02.001
Morshed, S. R., Fattah, Md. A., Haque, Md. N., & Morshed, S. Y. (2022). Future ecosystem service value modeling with land cover dynamics by using machine learning based Artificial Neural Network model for Jashore city, Bangladesh. Physics and Chemistry of the Earth, Parts A/B/C, 126, 103021. https://doi.org/10.1016/j.pce.2021.103021
Naidoo, U., Flack, P., & Essack, S. (2013). Secondary school factors relating to academic success in first year School of Health Science students at the University of KwaZulu-Natal.
Naif, S. S., Mahmood, D. A., & Al-Jiboori, M. H. (2020). Seasonal normalized difference vegetation index responses to air temperature and precipitation in Baghdad. Open Agriculture, 5(1), 631–637. https://doi.org/10.1515/opag-2020-0065
Nichol, J. E., & To, P. H. (2012). Temporal characteristics of thermal satellite images for urban heat stress and heat island mapping. ISPRS Journal of Photogrammetry and Remote Sensing, 74, 153–162. https://doi.org/10.1016/j.isprsjprs.2012.09.007
Nzoiwu, C. P., Agulue, E. I., Mbah, S., & Igboanugo, C. P. (2017). Impact of Land Use/Land Cover Change on Surface Temperature Condition of Awka Town, Nigeria. Journal of Geographic Information System, 9(6), Article 6. https://doi.org/10.4236/jgis.2017.96047
Pal, S., & Ziaul, Sk. (2017a). Detection of land use and land cover change and land surface temperature in English Bazar urban centre. The Egyptian Journal of Remote Sensing and Space Science, 20(1), 125–145. https://doi.org/10.1016/j.ejrs.2016.11.003
Pal, S., & Ziaul, Sk. (2017b). Detection of land use and land cover change and land surface temperature in English Bazar urban centre. The Egyptian Journal of Remote Sensing and Space Science, 20(1), 125–145. https://doi.org/10.1016/j.ejrs.2016.11.003
Patidar, S., & Sankhla, V. (2015). Change Detection of Land-use and Land-cover of Dehradun City: A Spatio-Temporal Analysis. https://doi.org/10.23953/CLOUD.IJARSG.105
Reisi, M., Ahmadi Nadoushan, M., & Aye, L. (2019). Remote sensing for urban heat and cool islands evaluation in semi-arid areas. Global Journal of Environmental Science and Management, 5(3), 319–330. https://doi.org/10.22034/GJESM.2019.03.05
Rogan, J., & Chen, D. (2004). Remote sensing technology for mapping and monitoring land-cover and land-use change. Progress in Planning, 4(61), 301–325. https://doi.org/10.1016/S0305-9006(03)00066-7
Rouse, J., Haas, R. H., Schell, J. A., & Deering, D. (1973). Monitoring vegetation systems in the great plains with ERTS. Undefined. https://www.semanticscholar.org/paper/Monitoring-vegetation-systems-in-the-great-plains-Rouse-Haas/fb2f60fe0fe2874e5cbf927a2556d719c32eac29
Saini, V., & Tiwari, R. (2017, October 23). EFFECT OF URBANIZATION ON LAND SURFACE TEMPERATURE AND NDVI: A CASE STUDY OF DEHRADUN, INDIA.
Santosa, P. B. (2016). Evaluation of satellite image correction methods caused by differential terrain illumination. Jurnal Forum Geografi. Vol. 30, No. 1 (2016). https://doi.org/10.23917/forgeo.v30i1.1768
Shalaby, A., & Tateishi, R. (2007). Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt, Appl. Applied Geography, 27, 28–41. https://doi.org/10.1016/j.apgeog.2006.09.004
Singh, P., Kikon, N., & Verma, P. (2017). Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing based estimate. Sustainable Cities and Society, 32, 100–114. https://doi.org/10.1016/j.scs.2017.02.018
Sobrino, J. A., Raissouni, N., & Li, Z.-L. (2001). A Comparative Study of Land Surface Emissivity Retrieval from NOAA Data. Remote Sensing of Environment, 75(2), 256–266. https://doi.org/10.1016/S0034-4257(00)00171-1
Sobrino, J., Jimenez-Munoz, J.-C., & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 90, 434–440. https://doi.org/10.1016/j.rse.2004.02.003
Sobrino, J., Raissouni, N., & Li, Z.-L. (2001). A Comparative Study of Land Surface Emissivity Retrieval from NOAA Data. Remote Sensing of Environment, 75, 256–266. https://doi.org/10.1016/S0034-4257(00)00171-1
Song, J., Du, S., Feng, X., & Guo, L. (2014). The relationships between landscape compositions and land surface temperature: Quantifying their resolution sensitivity with spatial regression models. Landscape and Urban Planning, 123, 145–157. https://doi.org/10.1016/j.landurbplan.2013.11.014
Sresto, M. A., Siddika, S., Fattah, Md. A., Morshed, S. R., & Morshed, Md. M. (2022a). A GIS and remote sensing approach for measuring summer-winter variation of land use and land cover indices and surface temperature in Dhaka district, Bangladesh. Heliyon, 8(8), e10309. https://doi.org/10.1016/j.heliyon.2022.e10309
Sresto, M. A., Siddika, S., Fattah, Md. A., Morshed, S. R., & Morshed, Md. M. (2022b). A GIS and remote sensing approach for measuring summer-winter variation of land use and land cover indices and surface temperature in Dhaka district, Bangladesh. Heliyon, 8(8), e10309. https://doi.org/10.1016/j.heliyon.2022.e10309
Srivastava, P. K., Han, D., Rico-Ramirez, M. A., Bray, M., & Islam, T. (2012). Selection of classification techniques for land use/land cover change investigation. Advances in Space Research, 50(9), 1250–1265. https://doi.org/10.1016/j.asr.2012.06.032
Stehman, S. V., & Czaplewski, R. L. (1998). Design and Analysis for Thematic Map Accuracy Assessment: Fundamental Principles. 64, 331–344.
Sun, D., & Kafatos, M. (2007). Note on the NDVI-LST relationship and the use of temperature-related drought indices over North America. Geophysical Research Letters, 34(24). https://doi.org/10.1029/2007GL031485
Sun, L., Liang, S., Yuan, W., & Chen, Z. (2013). Improving a Penman–Monteith evapotranspiration model by incorporating soil moisture control on soil evaporation in semiarid areas. International Journal of Digital Earth, 6(sup1), 134–156. https://doi.org/10.1080/17538947.2013.783635
Sun, Q., Wang, Z., Li, Z., Erb, A., & Schaaf, C. B. (2017). Evaluation of the global MODIS 30 arc-second spatially and temporally complete snow-free land surface albedo and reflectance anisotropy dataset. International Journal of Applied Earth Observation and Geoinformation, 58, 36–49. https://doi.org/10.1016/j.jag.2017.01.011
Syafitri, A. K. N., & Santosa, P. B. (2020). Spatial Analysis of Kulon Progo District Development from 2007-2030 with Cellular Automata Markov Model. Proceeding The 1st International Conference on Geodesy, Geomatics, and Land Administration 2019. KnE Engineering, 4(3), 269–277. https://doi.org/10.18502/keg.v4i3.5864
Taloor, A. K., Kumar, V., Singh, V. K., Singh, A. K., Kale, R. V., Sharma, R., Khajuria, V., Raina, G., Kouser, B., & Chowdhary, N. H. (2020). Land Use Land Cover Dynamics Using Remote Sensing and GIS Techniques in Western Doon Valley, Uttarakhand, India. In S. Sahdev, R. B. Singh, & M. Kumar (Eds.), Geoecology of Landscape Dynamics (pp. 37–51). Springer. https://doi.org/10.1007/978-981-15-2097-6_4
Thakur, S., Mondal, I., Ghosh, P. B., Das, P., & De, T. K. (2020). A review of the application of multispectral remote sensing in the study of mangrove ecosystems with special emphasis on image processing techniques. Spatial Information Research, 28(1), 39–51. https://doi.org/10.1007/s41324-019-00268-y
Thapa, R., & Bahuguna, V. (2021). Monitoring Land Encroachment and Land Use & Land Cover (LULC) Change in The Pachhua Dun, Dehradun District Using Landsat Images 1989 and 2020. JGISE: Journal of Geospatial Information Science and Engineering, 4, 71. https://doi.org/10.22146/jgise.64857
Thomlinson, J. R., Bolstad, P. V., & Cohen, W. B. (1999). Coordinating Methodologies for Scaling Landcover Classifications from Site-Specific to Global: Steps toward Validating Global Map Products. Remote Sensing of Environment, 70(1), 16–28. https://doi.org/10.1016/S0034-4257(99)00055-3
Verma, P., Raghubanshi, A., Srivastava, P. K., & Raghubanshi, A. S. (2020). Appraisal of kappa-based metrics and disagreement indices of accuracy assessment for parametric and nonparametric techniques used in LULC classification and change detection. Modeling Earth Systems and Environment, 6(2), 1045–1059. https://doi.org/10.1007/s40808-020-00740-x
Walsh, S. J., Crawford, T. W., Welsh, W. F., & Crews-Meyer, K. A. (2001). A multiscale analysis of LULC and NDVI variation in Nang Rong district, northeast Thailand. Agriculture, Ecosystems & Environment, 85(1), 47–64. https://doi.org/10.1016/S0167-8809(01)00202-X
Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89(4), 467–483. https://doi.org/10.1016/j.rse.2003.11.005
Xiaoqing, Z., & Jianlan, R. (2007). Study on Dynamic Mechanism of Urban Expansion: A Case Study of Shandong Province. Chinese Journal of Population Resources and Environment, 5(3), 37–42. https://doi.org/10.1080/10042857.2007.10677516
Yim, K. H., Nahm, F. S., Han, K. A., & Park, S. Y. (2010). Analysis of Statistical Methods and Errors in the Articles Published in the Korean Journal of Pain. 23(1), 35–41. https://doi.org/10.3344/kjp.2010.23.1.35
Yusuf, Y. A., Pradhan, B., & Idrees, M. O. (2014). Spatio-temporal Assessment of Urban Heat Island Effects in Kuala Lumpur Metropolitan City Using Landsat Images. Journal of the Indian Society of Remote Sensing, 42(4), 829–837. https://doi.org/10.1007/s12524-013-0342-8
Yuvaraj, R. M. (2020). Extents of Predictors for Land Surface Temperature Using Multiple Regression Model. The Scientific World Journal, 2020, e3958589. https://doi.org/10.1155/2020/3958589
Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3), 583–594. https://doi.org/10.1080/01431160304987
Zhang, F., Tiyip, T., Kung, H., Johnson, V. C., Maimaitiyiming, M., Zhou, M., & Wang, J. (2016). Dynamics of land surface temperature (LST) in response to land use and land cover (LULC) changes in the Weigan and Kuqa river oasis, Xinjiang, China. Arabian Journal of Geosciences, 9(7), 499. https://doi.org/10.1007/s12517-016-2521-8
Zhang, Y., Odeh, I. O. A., & Ramadan, E. (2013). Assessment of land surface temperature in relation to landscape
metrics and fractional vegetation cover in an urban/peri-urban region using Landsat data. International Journal of Remote Sensing, 34(1), 168–189. https://doi.org/10.1080/01431161.2012.712227
Zhou, X., & Wang, Y.-C. (2011a). Dynamics of Land Surface Temperature in Response to Land-Use/Cover Change. Geographical Research, 49(1), 23–36. https://doi.org/10.1111/j.1745-5871.2010.00686.x
Zhou, X., & Wang, Y.-C. (2011b). Dynamics of Land Surface Temperature in Response to Land-Use/Cover Change. Geographical Research, 49(1), 23–36. https://doi.org/10.1111/j.1745-5871.2010.00686.x
DOI: https://doi.org/10.22146/jgise.88002
Article Metrics
Abstract views : 1905 | views : 1221Refbacks
- —
- —
- Examining the spatio-temporal relationship between LST, NDVI, NDBI and LULC change of Pachhua dun, Dehradun, Uttarakhand (India)
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Geospatial Information Science and Engineering (JGISE) ISSN: 2623-1182 (Online) Email: jgise.ft@ugm.ac.id The Contents of this website is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.