Numerical Modelling Based on Digital Elevation Model (DEM) Analysis of Debris Flow at Rinjani Volcano, West Nusa Tenggara, Indonesia

https://doi.org/10.22146/jcef.63417

Muhammad Fatih Qodri(1*), Noviardi Noviardi(2), Al Hussein Flowers Rizqi(3), Lindung Zalbuin Mase(4)

(1) Department of Geological Engineering, Institut Teknologi Nasional Yogyakarta, INDONESIA Babarsari Rd., Caturtunggal, Depok, Sleman, Daerah Istimewa Yogyakarta
(2) Department of Geological Engineering, Institut Teknologi Nasional Yogyakarta, INDONESIA Babarsari Rd., Caturtunggal, Depok, Sleman, Daerah Istimewa Yogyakarta
(3) Department of Geological Engineering, Institut Teknologi Nasional Yogyakarta, INDONESIA Babarsari Rd., Caturtunggal, Depok, Sleman, Daerah Istimewa Yogyakarta
(4) Department of Civil Engineering, University of Bengkulu, INDONESIA WR. Supratman Rd., Kandang Limun, Bengkulu
(*) Corresponding Author

Abstract


Debris flow is a disaster occurring in cases where a sediment particle flows at high speed, down to the slope, and usually with high viscosity and speed. This disaster is very destructive and human life-threatening, especially in mountainous areas. As one of the world’s active volcanoes in the world, Rinjani had the capacity to produce over 3 million m3 volume material in the 2015 eruption alone. Therefore, this study proposes a numerical model analysis to predict the debris flow release area (erosion) and deposition, as well as the discharge, flow height, and velocity. The Digital Elevation Model (DEM) was analyzed in ArcGIS, to acquire the Cartesian coordinates and “hillshade” form. This was also used as a method to produce vulnerable areas in the Jangkok watershed. Meanwhile, the Rapid Mass Movement Simulation (RAMSS) numerical modeling was simulated using certain parameters including volume, friction, and density, derived from the DEM analysis results and assumptions from similar historical events considered as the best-fit rheology. In this study, the release volume was varied at 1,000,000 m3, 2,000,000 m3, and 3,000,000 m3, while the simulation results show movement, erosion, and debris flow deposition in Jangkok watershed. This study is bound to be very useful in mitigating debris flow as disaster anticipation and is also expected to increase community awareness, as well as provide a reference for structural requirements, as a debris flow prevention.

Keywords


Numerical modeling; DEM; Debris; RAMMS; Rinjani

Full Text:

PDF


References

Ayotte, D. and Hungr, O., 2000. Calibration of a runout prediction model for debris-flows and avalanches. In Debris-flow hazards mitigation: mechanics, prediction, and assessment (pp. 505-514).

Badan Informasi Geospasial (BIG). Geospasial Untuk Negeri. Available at: http://tanahair.indonesia.go.id. [Accessed 1 Maret 2021].

Bartelt, P., Bühler, Y., Christen, M., Deubelbeiss, Y., Graf, C., McArdell, B. W., and Schneider, M., 2015. RAMMS-DF User Manual. WSL Institute for Snow and Avalanche Research SLF, Davos, Birmensdorf, Switzerland

Christen, M., Kowalski, J. and Bartelt, P., 2010. ‘RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain’. Cold Regions Science and Technology, 63(1), pp. 1–14.

Cui, P., 2000. The classification of Chinese debris flows. Edited by BX Tang. Commercial Press, Beijing, pp.60-71.

Cui, Y. F.; Zhou, X. J.; Guo, C. X. 2017. Experimental study on the moving characteristics of fine grains in wide grading unconsolidated soil under heavy rainfall. Journal of Mountain Science, vol. 14, no. 3, pp. 417-431.

Deubelbeiss, Y. and Graf, C., 2013. Two different starting conditions in numerical debris flow models–Case study at Dorfbach, Randa (Valais, Switzerland). GRAF, C. (Red.) Mattertal–ein Tal in Bewegung. Publikation zur Jahrestagung der Schweizerischen Geomorphologischen Gesellschaft, 29, pp.125-138.

Dowling, C.A. and Santi, P.M., 2014. Debris flows and their toll on human life: a global analysis of debris-flow fatalities from 1950 to 2011. Natural hazards, 71(1), pp.203-227.

Fakultas Ilmu dan Teknologi Kebumian ITB (FITB). Ganasnya Longsor dan Aliran Bahan Rombakan. Available at: https://fitb.itb.ac.id/2019/01/ganasnya-longsor-dan-aliran-bahan-rombakan/. [Accessed 30 December 2020].

Fathani, T.F. and Legono, D., 2013. The application of monitoring and early warning system of rainfall-triggered debris flow at Merapi Volcano, Central Java, Indonesia. In Progress of Geo-Disaster Mitigation Technology in Asia (pp. 263-275). Springer, Berlin, Heidelberg.

Hidayani, N., 2015. Pemetaan Rawan Banjir Bandang Daerah Aliran Sungai Sambelia Kecamatan Sambelia Kabupaten Lombok Timur NTB, Yogyakarta: Doctoral Dissertation Report, Universitas Gadjah Mada.

Hungr, O., 1995. A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Canadian Geotechnical Journal, 32(4), pp. 610–623.

Hungr, O., Leroueil, S. and Picarelli, L., 2012. Varnes classification of landslide types, an update. In 11th International Symposium on Landslides (Vol. 1, pp. 47-58). CRC Press Taylor&Francis Group.

Iverson, R.M., 2005. Debris-flow mechanics. In Debris-flow hazards and related phenomena (pp. 105-134). Springer, Berlin, Heidelberg.

Kristiawan, Y., & Sumaryono, S., 2020. Pemodelan Aliran Bahan Rombakan (Debris Flow) di Kecamatan Sambelia, Kabupaten Lombok Timur, Nusa Tenggara Barat. Jurnal Lingkungan dan Bencana Geologi, 11, 49-62.

Mangga, S., Atmawinata, S., Hermanto, B., Setyogroho, B., and Amin, T.C., 1994. Peta Geologi Lembar Lombok, Nusa Tenggara. Pusat Penelitian dan Pengembangan Geologi, Indonesia.

National Agency for Disaster Management (BNPB), 2016 Rencana Kontijensi Menghadapi Ancaman Bencana Erupsi Gunungapi Rinjani/Barujari Provinsi Nusa Tenggara Barat, Mataram.

Salm, B., 1993. Flow, flow transition and runout distances of flowing avalanches. Annals of Glaciology, 18, pp.221-226.

Scheidl, C., Chiari, M., Kaitna, R., Müllegger, M., Krawtschuk, A., Zimmermann, T. and Proske, D., 2013. Analysing debris-flow impact models, based on a small-scale modelling approach. Surveys in Geophysics, 34(1), pp.121-140.

Schraml, K., Thomschitz, B., McArdell, B.W., Graf, C. and Kaitna, R., 2015. Modeling debris-flow runout patterns on two alpine fans with different dynamic simulation models. Natural Hazards and Earth System Sciences, 15(7), pp.1483-1492.

Takahashi, T. and Das, D.K., 2014. Debris flow: mechanics, prediction, and countermeasures. CRC press.

Tempfli, K., 1991. DTM and differential modelling in: Proceedings ISPRS and OEEPE joint workshop on updating data by photogrammetric records. by PRT Newby. OEEPE publication, 27, pp.193-200.

The Ministry of Public Works and Housing, BWS Nusa Tenggara I (KemPUPR), 2019, Buku Data dan Informasi Pengelolaan Sumber Daya Air WS Lombok dan WS Sumbawa Tahun 2019, Jakarta.



DOI: https://doi.org/10.22146/jcef.63417

Article Metrics

Abstract views : 3656 | views : 2164

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 The Author(s)


The content of this website is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
ISSN 5249-5925 (online) | ISSN 2581-1037 (print)
Jl. Grafika No.2 Kampus UGM, Yogyakarta 55281
Email : jcef.ft@ugm.ac.id
Web Analytics JCEF Stats