Multi-Disaster Risk Analysis of Klaten Regency, Central Java, Indonesia

https://doi.org/10.22146/jcef.26743

Candra Dian Lukita Tauhid(1*), Teuku Faisal Fathani(2), Djoko Legono(3)

(1) Department of Public Works of Klaten Regency, Central Java, INDONESIA
(2) Center for Disaster Mitigation and Technological Innovation (GAMA-InaTEK) Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada
(3) Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada
(*) Corresponding Author

Abstract


Klaten Regency is located in Central Java Province, Indonesia, ranked as 19th most susceptible area in Indonesia. Among of many disasters those take place in Klaten are floods, landslides, and earthquake, which cause damages and loss of lives. Unfortunately, some areas in Klaten Regency are also very vulnerable to the disasters that often contribute severe damage and loss. This paper presents result of risk analysis due to floods, landslides and earthquake disaster at Klaten Regency. Several parameters or criteria are utilized to describe the level of the disaster intensities. The flood susceptibility parameters are the Topographic Wet Index (TWI), Normalized Difference Vegetation Index (NDVI), permeability and roughness, as proposed by Kafira, et al. (2015). The landslide susceptibility are the geology, slope, elevation, distance from fault, distance from rivers, rainfall and land use, as suggested by Thearith (2009) whereas the earthquake susceptibility was referred to FEMA P-154 by using the Ss and S1. The vulnerability and risk analysis are carried out by referring to the parameters as stipulated by the Chief Regulation of the National Board of Disaster Management No.2 Year 2012 (Perka Badan Nasional Penanggulangan Bencana- BNPB), concerning the parameters being used for the vulnerability analysis, i.e. population density, poverty ratio, land use, and level of Gross Regional Domestic Product. Further spatial analysis of the risk performs the multi-disaster risk map as a combination between the floods, landslides and earthquake disaster risk in Klaten Regency. The established multi-disaster risk map shows the risk level in the Klaten Regency, i.e., 16.31% at very low risk, 33.01% at low risk, 34.49% at medium risk, at 14.22% high risk and 1.97% at very high risk.


Keywords


Susceptibility, vulnerability, multi-disaster risk, national regulations

Full Text:

PDF


References

Badan Standardisasi Nasional, 2012. SNI 1726-2012 Tata Cara Perencanaan Ketahanan Gempa Untuk Struktur Bangunan Gedung & Non Gedung.

Beven & Kirkby, 1979. A Physically Based Variable Contributing Area Model of Basin Hydrology. Hydrol.Sci.Bull, Volume 24, pp. 43-69.

Blaikie, P., Cannon, T., Davis, I. & Wisner, B., 1994. At Risk: Natural Hazards, People’s Vulnerability, and Disasters. New York: Routledge.

Chalkias , C., Ferentinou, M. & Polykretis , C., 2014. GIS-Based Landslide Susceptibility Mapping on the Peloponnese Peninsula, Greece. Geosciences, Volume 4, pp. 176-190.

FEMA, 2015. FEMA P-154 Rapid Visual Screening of Buildings for Potential Seismic Hazards : A Handbook. 3rd ed. Washington: FEMA.

Foumelis, M., Lekkas, E. & Parcharidis, I., 2015. Landslide Suscepbility Mapping by GIS-Based Qualitative Weighting Procedure in Corinth Area. Buletin of the Geological of Greece, Volume XXXVI.

Gallina, V., Torresan, S., Critto, A. & Sperotto, A., 2015. A Review of Multi-Risk Methodologies for Natural Hazards : Consequences and Challenges for a Climate Change Impact Assesment. Journal of Enviroment Management, pp. 123-132.

Gemitzi, A., Falalakis, G., Eskioglou, P. & Petalas, C., 2011. Evaluating Landslide Suscepbility Using Environmental Factors, Fuzzy Membership Functions and GIS. Global Nest, 13(1), pp. 28-40.

Grabs, T., Seibert, J., Bishop , K. & Laudon, H., 2009. Modeling Spatial Patterns of Saturated Areas: A Comparison of the Topographic. Journal of Hydrology 373 , pp. 15-23.

Hunt, R. E., 2007. Geologic Hazards A Field Guide for Geotechnical Engineers. New York: McGraw-Hill.

Jamil, D. H., 2013. Deteksi Potensi Kekeringan Berbasis Penginderaan Jauh Dan Sistem Informasi Geografis Di Kabupaten Klaten, Semarang: Universitas Semarang.

Juandi, A., 2007. Analisis Perubahan Luas Daerah Genangan Tahun 2001 dan Tahun 2004 Berdasarkan pada Perubahan Tutupan Lahan dengan Menggunakan Metoda Rational, Bandung: ITB.

Kafira , V., Albanakis , K. & Oikonomidis , D., 2015. Flood Susceptibility Assessment using G.I.S. An example from Kassandra Peninsula, Halkidiki, Greece. Geology.

Khodadad, S. & Dong-Ho, . J., 2015. A comparative study of Analytical Hierarchy Process and Ordinary Least Square methods for landslide susceptibility mapping using GIS technology. The Online Journal of Science and Technology , 5(2).

Koukis, G. & Ziourkas, C., 1994. Slope Movements in The Greek Teritory : A Statistical Approach. pp. 4621-4628.

Lillesand, T. M. & Kiefer, F. W., 1993. Penginderaan Jauh dan Interpretasi Citra. Alih bahasa : R. Dubahri. Yogyakarta: UGM Press.

Manfreda, S., Sole, A. & Di Leo, M., 2011. Detection of Flood-Prone Areas Using Digital Elevation Models. Journal of Hydrologic Engineering, pp. 781-790.

Ministry of Public Works and Housing, 2011. Desain Spektra Indonesia. [Online]
Available at: http://puskim.pu.go.id/Aplikasi/desain_spektra_indonesia_2011/
[Accessed 21 Februari 2017].

Montgomery, D. R., Schmidt, K. M., Dictrich, W. E. & Greenberg, H. M., 2000. Forest Clearing and Regional Land Sliding in the Pacific Northwest. Geology, Volume 28, pp. 311-314.

Mouchel, 2013. Landslide Susceptibility Mapping : GIS Data Processing Steps Guide, Dublin: Department of Communication, Energy and Natural Resources.

Nardi, F., Vivoni, E. R. & Grimaldi, S., 2006. Investigating a Floodplain Scaling Relation Using a Hydrogeomorphic Delineation Method. Water Resources Research. Water Resources Research, 42(9). doi: 10.1029/2005WR004155

National Board for Disaster Management, 2008. Peraturan Kepala Badan Nasional Penanggulangan Bencana Nomor 4 Tahun 2008 Tentang Pedoman Penyusunan Rencana Penanggulangan Bencana.

National Board for Disaster Management, 2011. Indeks Risiko Bencana Indonesia (IRBI), Jakarta: BNPB.

National Board for Disaster Management, 2012. Peraturan Kepala Badan Nasional Penanggulangan Bencana (PERKA BNPB) No. 2 Tahun 2012 Tentang Pedoman Umum Pengkajian Risiko Bencana.

National Board for Disaster Management, 2015. http://geospasial.bnpb.go.id. [Online].

Pourghasemi, H. R., Pradhan, B. & Gokceoglu, C., 2012. Landslide Susceptibility Mapping Using a Spatial Multi Criteria Evaluation Model at Haraz Watershed, Iran. In: Terrigenous Mass Movements. Springer.

Pratiwi, R. D., Nugraha, A. L. & Hani'ah, 2016. Pemetaan Multi Bencana Kota Semarang. Jurnal Geodesi Undip (5) 4, pp. 122-131.

Regional Board for Disaster Management, 2015. Historical Data of Hazard in Klaten 2009-2014, Klaten: Regional Board for Disaster Management.

Samela, C., Troy, T. J., Sole, A. & Manfreda , S., 2016. A New Geomorphic Index for the Detection of Flood-Prone Areas at Large Scale. Convegno Nazionale di Idraulica e Costruzioni Idrauliche, Volume 35.

Sopheap, L., 2007. Landslide Risk Assesment at Piyungan - Patuk Area, Yogyakarta special Province, Indonesia, Yogyakarta: Universitas Gadjah Mada.

Tauhid, C. D., 2017. Multi Disaster Risk Mapping of Klaten Regency, Yogyakarta: Master Thesis, Faculty of Engineering, Universitas Gadjah Mada.

Thearith, Y., 2009. Landslide Risk Mapping using GIS-based Weighted Linear Combination in Kulonprogo Regency, Yogyakarta special Province, Indonesia, Yogyakarta: Universitas Gadjah Mada.

Westen, V. C., 2005. Landslide Hazard and Risk Assesment. International Institute for Geo-Information Science and Earth Observation (ITC).

Widiyatmoko, W. et al., 2015. Penentuan Zona Kerawanan Banjir Bandang dengan Metode Flash Flood Potential Index (FFPI) di Perbukitan Menoreh Kabupaten Kulonprogo Daerah Istimewa Yogyakarta. Ikatan Ahli Kebencanaan Indonesia.

Yang, X., Chapman, G. A., Young, M. A. & Gray, J. M., 2005. Using Compound Topographic Index to Delineate Soil Landscape Facets from Digital Elevation Models for Comprehensive Coastal Assessment. New South Wales Department of Natural Resources , pp. 1511-1517.



DOI: https://doi.org/10.22146/jcef.26743

Article Metrics

Abstract views : 3449 | views : 2820

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 The Author(s)


The content of this website is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
ISSN 5249-5925 (online) | ISSN 2581-1037 (print)
Jl. Grafika No.2 Kampus UGM, Yogyakarta 55281
Email : jcef.ft@ugm.ac.id
Web Analytics JCEF Stats