Peptide Inhibitors of Angiotensin-I Converting Enzyme (ACE) Bioavailability in Legumes Subjected to Hydrothermal Treatment
Luis Ojeda-Ojeda(1*), Nirza Noguera-Machado(2), José López(3), Valentina Rivera(4), Héctor Quintero(5), Anira Valero(6), Joselyn Díaz(7), Luis Pérez-Ybarra(8), Franklin Pacheco(9)
(1) Carabobo University
(2) Carabobo University, Faculty of Health Sciences, Biomedical Research Institute Dr. "Francisco Javier Triana Alonso"
(3) Carabobo University, Faculty of Health Sciences, School of Medicine.
(4) Carabobo University, Faculty of Health Sciences, School of Medicine
(5) Carabobo University, Faculty of Health Sciences, School of Medicine
(6) Carabobo University, Faculty of Health Sciences, School of Medicine
(7) Carabobo University, Faculty of Health Sciences, School of Medicine
(8) Carabobo University, Faculty of Health Sciences, School of Bioanalysis, Department of Basic Sciences
(9) Carabobo University, Faculty of Health Sciences, School of Bioanalysis, Department of Basic Sciences
(*) Corresponding Author
Abstract
The objective of this study was to evaluate the effect of Angiotensin-I Converting Enzyme (ACE) inhibitory peptides derived from five legumes (Vigna unguiculata, Cicer arietinum, Lens culinaris, Vicia faba, and Phaseolus vulgaris) after undergoing a hydrothermal treatment. The seeds were divided into two groups: one was subjected to drying and grinding, and the other one to cooking for 2 hours (100 °C), followed by drying and grinding. The flours obtained from the different processes were subjected to digestion with pepsin-pancreatin, and the resulting peptides were evaluated for their ACE inhibitory activity. The obtained results were subjected to analysis of variance and Tukey's test. The group consisting of the treatments V. unguiculata (82.63%), V. unguiculata cooked (96.41%), and C. arietinum (80.84%) showed the highest percentages of ACE inhibition, while the group comprising V. faba (6.0%), cooked L. culinaris (3.03%), and P. vulgaris (4.0%) exhibited the lowest inhibition percentages. These results demonstrate that V. unguiculata, V. faba, and C. arietinum can undergo hydrothermal treatment while still retaining their bioactive potential, ensuring a cooked flour, ready for formulating a multifunctional food.
Keywords
Full Text:
PDFReferences
Brizuela, J, and Jiménez Y. (2010). Niveles urinarios de fenol y ácido hipúrico en trabajadores de una empresa de pintura automotriz. Salud de los Trabajadores. 18(2), 107-116.
Chávez-Ontiveros, J., Reyes-Moreno, C., Ramírez-Torres, G. I., Figueroa-Salcido, O. G., Arámburo-Gálvez, J. G., Montoya-Rodríguez, A., Ontiveros, N. and Cuevas-Rodríguez, E. O. (2022). Extrusion improves the antihypertensive potential of a kabuli chickpea (Cicer arietinum L.) protein hydrolysate. Foods. 11, 2562. https://doi.org/10.3390/foods11172562.
Chew, L. Y., Toh, G. T., Ismail, A. (2019). Chapter 15 - Application of proteases for the production of bioactive peptides. In: Kuddus M, editor. Enzymes in Food Biotechnology Academic Press;.
Cú-Cañetas, T., Betancur, D., Gallegos, S., Sandoval, M, and Chel, L. (2015). Studies in vitro inhibition of the angiotensin-converting enzyme-I, hypotensive and antihypertensive effects of peptide fractions of V. unguiculata. Nutrición Hospitalaria, 32(5), 2117-2125. https://doi.org/10.3305/nh.2015.32.5.9624.
Daliri, B-M, Oh, D. H, and Lee B. H. (2017). Bioactive Peptides. Foods 6(5), 32. https://doi.org/10.3390/foods6050032.
Mauer, K., Exaire, J. E., and Escalante, B. A. (2001). Importancia de la enzima convertidora de angiotensina (ECA) en la circulación coronaria. Archivos de cardiología de México, 71(4), 278-285.
Drago, S. R., Franco-Miranda, H., Cian, R. E., Betancur-Ancona, D., and Chel-Guerrero, L. (2016). Bioactive properties of Phaseolus lunatus (Lima Bean) and Vigna unguiculata (Cowpea) hydrolyzates incorporated into pasta. Residual activity after pasta cooking. Plant Foods for Human Nutrition, 71, 339-345. https://doi.org/10.1007/s11130-016-0565-2
Felix, M., Cermeño, M., & FitzGerald, R. J. (2019). Assessment of the microstructural characteristics and the in vitro bioactive properties of sunflower oil-based emulsions stabilized by fava bean (Vicia faba) protein. Food Hydrocolloids, 97, 105-220. https://doi.org/10.1016/
j.foodhyd.2019.105220.
Filipiak-Florkiewicz, A., Florkiewicz, A., Cieslik, E., Walkowska, I., Walczycka, M., Leszczynska, T, and Kapusta-Duch, J. (2011). Effects of various hydrothermal treatments on selected nutrients in legume seeds. Polish journal of food and nutrition sciences, 61(3), 181-186
Flores, L. and Ruiz, A. (2017). Implementación de una metodología analítica para la cuantificación de proteínas en la microalga Arthrospira platensis. Revista de la Sociedad de Química del Perú, 83(4), 371-381
García-Mora, P., Martín-Martínez, M., Bonache, M. A., González-Múniz, R., Peñas, E., Frias, J., and Martinez-Villaluenga, C. (2017). Identification, functional gastrointestinal stability, and molecular docking studies of lentil peptides with dual antioxidant and angiotensin I converting enzyme inhibitory activities. Food Chemistry, 221(1), 464-472. https://doi.org/10.1016/j.foodchem.2016.10.087.
Hernández-Rodríguez, B.E., Aguirre-Mandujano, E., Prado-Barragán, A., Koh-Kantún, G. I., and Lobato-Calleros, C. (2020). Antioxidant and ACE-inhibitory activities of hydrolysates obtained from lupin and faba bean proteins via enzymatic hydrolysis and fermentation. Ingeniería agrícola y biosistemas, 12(2), 99-114. http://dx.doi.org/10.5154/r.inagbi.2020.02.020.
Hidalgo, M., Rodríguez, V, and Porras, O. (2018) Una mirada actualizada de los beneficios fisiológicos derivados del consumo de legumbres. Revista de Chilena de Nutrición, 45, 32–44. http://dx.doi.org/10.4067/
S0717-75182018000200032.
Kaur, A., Kehinde, B. A., Sharma, P., Sharma, D., and Kaur, S. (2021). Recently isolated food-derived antihypertensive hydrolysates and peptides: A review. Food Chemistry, 346, 128719. https://doi.org/
10.1016/j.foodchem.2020.128719.
Li, G. H., Le, G. W., Liu, H. & Hui Shi, Y. (2005). Mung-bean protein hydrolysates obtained with alcalase exhibit angiotensin I-converting enzyme inhibitory activity. Food Science and Technology International, 11(4), 281–287. https://doi.org/10.1177/1082013205056781.
Liu, Y. F., Oey, I, Bremer P, Carne A, and Silcock P. (2018). Bioactive peptides derived from egg proteins: A review. Critical Reviews in Food Science and Nutrition, 58(15), 2508-2530. https://doi.org/10.1080/
10408398.2017.1329704.
Makoto, H., Yoshikazu, K, and Hiroshi, I. (1978). A Rapid and simple spectrophotometric assay of Angiotensin-Converting Enzyme. Analytical Biochemistry. 84, 361–9. https://doi.org/10.1177/108201320505678.
Matoba, N., Yamada, Y., Usui, H., Nakagiri, R., & Yoshikawa, M. (2000). Designing Potent Derivatives of Ovokinin (2–7), an Anti-hypertensive Peptide Derived from Ovalbumin. Bioscience, Biotechnology, and Biochemistry, 65(3), 736–739. https://doi.org/
10.1271/bbb.65.736
Mojica, L., Chen, K., & de Mejía, E. G. (2015). Impact of commercial precooking of common bean (Phaseolus vulgaris) on the generation of peptides, after pepsin–pancreatin hydrolysis, capable to inhibit dipeptidyl peptidase‐IV. Journal of Food Science, 80(1), 188-198. doi: https://doi.org/10.1111/1750-3841.12726.
Muñoz-Llandes, C. B., Guzmán-Ortiz, F. A., Olivares, L. G. G., Palma-Rodríguez, H. M., Román-Gutiérrez, A. D., and Castro-Rosas, J. (2021). Germinación: un método de bioproceso que incrementa la calidad nutricional, biológica y funcional de harinas de leguminosas. Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 9(Especial2), 119-122.
Organización Panamericana para la Salud (OPS). (2023). Hipertensión. https://www.paho.org/es/temas/
hipertension.
Pertiwi, M., Marsono, Y. & Indrati, R. (2020). In vitro gastrointestinal simulation of tempe prepared from koro kratok (Phaseolus lunatus L.) as an angiotensin-converting enzyme inhibitor. Journal of Food Science and Technology, 57, 1847–1855. https://doi.org/
10.1007/s13197-019-04219-1.
Rezvankhah, A., Yarmand, M. S., Ghanbarzadeh, B, and Mirzaee, H. (2023). Development of lentil peptides with potent antioxidant, antihypertensive, and antidiabetic activities along with umami taste. Food Science & Nutrition, 11(6), 2974-2989. https://doi.org/10.1002/fsn3.3279.
Rizzello, C. G., Losito, I., Facchini, L., Katina, K., Palmisano, F., Gobbetti, M., and Coda, R. (2016). Degradation of vicine, convicine, and their aglycones during fermentation of faba bean flour. Scientific reports, 6(1), 32452. https://doi.org/10.1038/srep32452.
Sangsukiam, T, and Duangmal, K. (2022). Changes in bioactive compounds and health-promoting activities in adzuki bean: Effect of cooking conditions and in vitro simulated gastrointestinal digestion. Food Research International, 157, 111-371. https://doi:10.1016/
j.foodres.2022.111371.
Segura, M. R., Chel, L. A, and Betancur. D. A. (2010). Angiotensin-I converting enzyme inhibitory and antioxidant activities of peptide fractions extracted by ultrafiltration of cowpea Vigna unguiculata hydrolysates. Journal of Science Food Agriculture, 90(14), 2512–8. doi: 10.1002/jsfa.4114. PMID: 20690111.
Tagliazucchi, D., Martini, S., Bellesia, A, and Conte, A. (2015). Identification of ACE-inhibitory peptides from Phaseolus vulgaris after in vitro gastrointestinal digestion. International Journal of Food Sciences and Nutrition, 66(7), 774-782. https://doi.org/10.3109/
09637486.2015.1088940.
Torruco-Uco, J., Chel-Guerrero, L., Martínez-Ayala, A., Dávila-Ortíz, G, and Betancur-Ancona D. (2009). Angiotensin-I converting enzyme inhibitory and antioxidant activities of protein hydrolysates from Phaseolus lunatus and Phaseolus vulgaris seeds. LWT-Food Science and Technology, 42(10), 1597-1604. https://doi.org/10.1016/j.lwt.2009.06.006.
Vashishth, R., Semwal, A. D., Naika, M., Sharma, G. K., & Kumar, R. (2021). Influence of cooking methods on antinutritional factors, oligosaccharides, and protein quality of underutilized legume Macrotyloma uniflorum. Food Research International, 143, 110299. https://doi.org/10.1016/j.foodres.2021.110299.
Xue, L., Yin, R., Howell, K., & Zhang, P. (2021). Activity and bioavailability of food protein‐derived angiotensin‐I‐converting enzyme–inhibitory peptides. Comprehensive Reviews in Food Science and Food Safety, 20(2), 1150–1187. https://doi.org/10.1111/
1541-4337.12711.
Yu, Z., Zhao, W., Ding, L., Wang, Y., Chen, F., & Liu, J. (2017). Short‐and long‐term antihypertensive effect of egg protein‐derived peptide QIGLF. Journal of the Science of Food and Agriculture, 97(2), 551–555. https://doi.org/10.1002/jsfa.7762.
DOI: https://doi.org/10.22146/ifnp.89554
Article Metrics
Abstract views : 1054 | views : 780Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Food and Nutrition Progress (print ISSN 0854-6177, online ISSN 2597-9388) is published by the Indonesian Association of Food Technologist in collaboration with Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada.
Journal of Indonesian Food and Nutrition Progress have been indexed by:
This works is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.