Pengukuran Aktivitas Elektrodermal untuk Penelitian Psikologi
Abstract
Keywords
DOI: 10.22146/buletinpsikologi.87294
References
Baker, L. B. (2019). Physiology of sweat gland function: The roles of sweating and sweat composition in human health. Temperature: Multidisciplinary Biomedical Journal, 6(3), 211. https://doi.org/10.1080/23328940.2019.1632145
Bakker, J., Pechenizkiy, M., & Sidorova, N. (2011). What’s your current stress level? Detection of stress patterns from GSR sensor data. Proceedings - IEEE International Conference on Data Mining, ICDM, 1, 573–580. https://doi.org/10.1109/ICDMW.2011.178
Benedek, M., & Kaernbach, C. (2010a). A continuous measure of phasic electrodermal activity. Journal of Neuroscience Methods, 190(1), 80–91. https://doi.org/10.1016/J.JNEUMETH.2010.04.028
Benedek, M., & Kaernbach, C. (2010b). Decomposition of skin conductance data by means of nonnegative deconvolution. Psychophysiology, 47(4), 647–658. https://doi.org/10.1111/J.1469-8986.2009.00972.X
Boucsein, W. (2012). Electrodermal Activity.
Boucsein, W., Fowles, D. C., Grimnes, S., Ben-Shakhar, G., Roth, W. T., Dawson, M. E., & Filion, D. L. (2012). Publication recommendations for electrodermal measurements. Psychophysiology, 49(8), 1017–1034. https://doi.org/10.1111/j.1469-8986.2012.01384.x
Brouwer, A.-M., Zander, T. O., van Erp, J. B. F., Korteling, J. E., & Bronkhorst, A. W. (2015). Using neurophysiological signals that reflect cognitive or affective state: six recommendations to avoid common pitfalls. Frontiers in Neuroscience, 9. https://doi.org/10.3389/fnins.2015.00136
Cantarella, S., Hillenbrand, C., Aldridge-Waddon, L., & Puzzo, I. (2018). Preliminary evidence on the somatic marker hypothesis applied to investment choices. Journal of Neuroscience, Psychology, and Economics, 11(4), 228–238. https://doi.org/10.1037/npe0000097
Christopoulos, G. I., Uy, M. A., & Yap, W. J. (2019). The Body and the Brain: Measuring Skin Conductance Responses to Understand the Emotional Experience. Organizational Research Methods, 22(1), 394–420. https://doi.org/10.1177/1094428116681073
Crandall, C. G. (2010). Mechanisms and controllers of eccrine sweating in humans. Frontiers in Bioscience, S2(2), 94. https://doi.org/10.2741/s94
Dawson, M. E., Schell, A. M., & Courtney, C. G. (2011). The skin conductance response, anticipation, and decision-making. Journal of Neuroscience, Psychology, and Economics, 4(2), 111–116. https://doi.org/10.1037/a0022619
Gogate, U. D., & Bakal, Dr. J. W. (2019). Hunger and stress monitoring system using galvanic skin response. Indonesian Journal of Electrical Engineering and Computer Science, 13(3), 861. https://doi.org/10.11591/ijeecs.v13.i3.pp861-865
Greco, A., Valenza, G., Lanata, A., Scilingo, E. P., & Citi, L. (2016). CvxEDA: A convex optimization approach to electrodermal activity processing. IEEE Transactions on Biomedical Engineering, 63(4), 797–804. https://doi.org/10.1109/TBME.2015.2474131
Greco, A., Valenza, G., & Scilingo, E. P. (2016). Advances in Electrodermal Activity Processing with Applications for Mental Health. Dalam Advances in Electrodermal Activity Processing with Applications for Mental Health: From Heuristic Methods to Convex Optimization. Springer International Publishing. https://doi.org/10.1007/978-3-319-46705-4
Hernando-Gallego, F., Luengo, D., & Artes-Rodriguez, A. (2018). Feature Extraction of Galvanic Skin Responses by Nonnegative Sparse Deconvolution. IEEE Journal of Biomedical and Health Informatics, 22(5), 1385–1394. https://doi.org/10.1109/JBHI.2017.2780252
Hogervorst, M. A., Brouwer, A.-M., & van Erp, J. B. F. (2014). Combining and comparing EEG, peripheral physiology and eye-related measures for the assessment of mental workload. Frontiers in Neuroscience, 8. https://doi.org/10.3389/fnins.2014.00322
Horvers, A., Tombeng, N., Bosse, T., Lazonder, A. W., & Molenaar, I. (2021). Detecting Emotions through Electrodermal Activity in Learning Contexts: A Systematic Review. Sensors (Basel, Switzerland), 21(23). https://doi.org/10.3390/S21237869
Indrayanti, I., Claudia, A. V., Adi, S. P., & Lufityanto, G. (2022). Science Majoring Background Modulates the Psychological Responses to Stress on Numerical Task. Gadjah Mada Journal of Psychology (GamaJoP), 8(2), 150. https://doi.org/10.22146/gamajop.72911
Khakim, Z., & Kusrohmaniah, S. (2022). The Effect of Emotional Distraction on Declarative Memory and an Exploration of its Physiological Marker: An Affective Computing Perspective. Jurnal Psikologi, 49(3), 255. https://doi.org/10.22146/jpsi.74145
Kobas, B., Koth, S. C., Nkurikiyeyezu, K., Giannakakis, G., & Auer, T. (2021). Effect of Exposure Time on Thermal Behaviour: A Psychophysiological Approach. Signals, 2(4), 863–885. https://doi.org/10.3390/signals2040050
Kuoppa, P., Pulkkinen, K., Tarvainen, M. P., Lankinen, M., Lapveteläinen, A., Sinikallio, S., Karhunen, L., Karjalainen, P. A., Kolehmainen, M., Sallinen, J., & Närväinen, J. (2016). Psychophysiological responses to positive and negative food and nonfood visual stimuli. Journal of Neuroscience, Psychology, and Economics, 9(2), 78–88. https://doi.org/10.1037/npe0000053
Mueller, S. Q., Ring, P., & Fischer, M. (2022). Excited and aroused: The predictive importance of simple choice process metrics. Journal of Neuroscience, Psychology, and Economics, 15(1), 31–53. https://doi.org/10.1037/npe0000151
National Research Council. (2003). The Polygraph and Lie Detection. National Academies Press. https://doi.org/10.17226/10420
Nourbakhsh, N., Wang, Y., Chen, F., & Calvo, R. A. (2012). Using galvanic skin response for cognitive load measurement in arithmetic and reading tasks. Proceedings of the 24th Australian Computer-Human Interaction Conference, OzCHI 2012, 420–423. https://doi.org/10.1145/2414536.2414602
Ohira, H., & Hirao, N. (2015). Analysis of skin conductance response during evaluation of preferences for cosmetic products. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.00103
Persson, E., Asutay, E., Hagman, W., Västfjäll, D., & Tinghög, G. (2018). Affective response predicts risky choice for fast, but not slow, decisions. Journal of Neuroscience, Psychology, and Economics, 11(4), 213–227. https://doi.org/10.1037/npe0000096
Pop-Jordanova, N., & Pop-Jordanov, J. (2020). Electrodermal Activity and Stress Assessment. Prilozi (Makedonska akademija na naukite i umetnostite. Oddelenie za medicinski nauki), 41(2), 5–15. https://doi.org/10.2478/PRILOZI-2020-0028
Posada-Quintero, H. F., & Chon, K. H. (2020). Innovations in electrodermal activity data collection and signal processing: A systematic review. Sensors (Switzerland), 20(2). https://doi.org/10.3390/S20020479
Rahma, O., Putra, A., Rahmatillah, A., Putri, Y., Fajriaty, N., Ain, K., & Chai, R. (2022). Electrodermal Activity for Measuring Cognitive and Emotional Stress Level. Journal of medical signals and sensors, 12(2), 155–162. https://doi.org/10.4103/JMSS.JMSS_78_20
Ramsøy, T. Z., Jacobsen, C., Friis-Olivarius, M., Bagdziunaite, D., & Skov, M. (2017). Predictive value of body posture and pupil dilation in assessing consumer preference and choice. Journal of Neuroscience, Psychology, and Economics, 10(2–3), 95–110. https://doi.org/10.1037/npe0000073
Reid, C., Keighrey, C., Murray, N., Dunbar, R., & Buckley, J. (2020). A Novel Mixed Methods Approach to Synthesize EDA Data with Behavioral Data to Gain Educational Insight. Sensors 2020, Vol. 20, Page 6857, 20(23), 6857. https://doi.org/10.3390/S20236857
Romine, W., Schroeder, N., Banerjee, T., & Graft, J. (2022). Toward Mental Effort Measurement Using Electrodermal Activity Features. Sensors 2022, Vol. 22, Page 7363, 22(19), 7363. https://doi.org/10.3390/S22197363
Sanchez-Comas, A., Synnes, K., Molina-Estren, D., Troncoso-Palacio, A., & Comas-González, Z. (2021). Correlation Analysis of Different Measurement Places of Galvanic Skin Response in Test Groups Facing Pleasant and Unpleasant Stimuli. Sensors, 21(12), 4210. https://doi.org/10.3390/s21124210
Sapolsky, R. M. (2015). Stress and the brain: Individual variability and the inverted-U. Nature Neuroscience, 18(10), 1344–1346. https://doi.org/10.1038/nn.4109
Sapolsky, R. M. (2021). Glucocorticoids, the evolution of the stress-response, and the primate predicament. Neurobiology of Stress, 14(March), 100320. https://doi.org/10.1016/j.ynstr.2021.100320
Sarchiapone, M., Gramaglia, C., Iosue, M., Carli, V., Mandelli, L., Serretti, A., Marangon, D., & Zeppegno, P. (2018). The association between electrodermal activity (EDA), depression and suicidal behaviour: A systematic review and narrative synthesis. BMC psychiatry, 18(1). https://doi.org/10.1186/S12888-017-1551-4
Setyohadi, D. B., Kusrohmaniah, S., Gunawan, S. B., Pranowo, P., & Prabuwono, A. S. (2018). Galvanic Skin Response Data Classification for Emotion Detection. International Journal of Electrical and Computer Engineering (IJECE), 8(5), 4004. https://doi.org/10.11591/ijece.v8i5.pp4004-4014
Setz, C., Arnrich, B., Schumm, J., La Marca, R., Troster, G., & Ehlert, U. (2010). Discriminating Stress From Cognitive Load Using a Wearable EDA Device. IEEE Transactions on Information Technology in Biomedicine, 14(2), 410–417. https://doi.org/10.1109/TITB.2009.2036164
Shaw, S. D., & Bagozzi, R. P. (2018). The neuropsychology of consumer behavior and marketing. Consumer Psychology Review, 1(1), 22–40. https://doi.org/10.1002/arcp.1006
Stagg, S. D., Davis, R., & Heaton, P. (2013). Associations between language development and skin conductance responses to faces and eye gaze in children with autism spectrum disorder. Journal of Autism and Developmental Disorders, 43(10), 2303–2311. https://doi.org/10.1007/S10803-013-1780-4/FIGURES/3
Stržinar, Ž., Sanchis, A., Ledezma, A., Sipele, O., Pregelj, B., & Škrjanc, I. (2023). Stress Detection Using Frequency Spectrum Analysis of Wrist-Measured Electrodermal Activity. Sensors 2023, Vol. 23, Page 963, 23(2), 963. https://doi.org/10.3390/S23020963
Stuldreher, I. V, Thammasan, N., van Erp, J. B. F., & Brouwer, A.-M. (2020). Physiological synchrony in EEG, electrodermal activity and heart rate reflects shared selective auditory attention. Journal of Neural Engineering, 17(4), 046028. https://doi.org/10.1088/1741-2552/aba87d
Terriault, P., Kozanitis, A., & Farand, P. (2021). Use of Electrodermal Wristbands to Measure Student’s Cognitive Engagement in the Classroom. Proceedings of the Canadian Engineering Education Association (CEEA). https://doi.org/10.24908/pceea.vi0.14827
Thammasan, N., Stuldreher, I. V., Schreuders, E., Giletta, M., & Brouwer, A.-M. (2020). A Usability Study of Physiological Measurement in School Using Wearable Sensors. Sensors, 20(18), 5380. https://doi.org/10.3390/s20185380
Wincewicz-Cichecka, K., & Nasierowski, T. (2020). Electrodermal activity and suicide risk assessment in patients with affective disorders. Psychiatria polska, 54(6), 1137–1147. https://doi.org/10.12740/PP/110144
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Buletin Psikologi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.