Working Memory Versus Inhibitory Control: Sebuah Kajian Neuropsikologi Mengenai Peran Informasi Tidak Relevan

Nani Restati Siregar
(Submitted 4 February 2020)
(Published 28 June 2021)

Abstract


Studi terdahulu melaporkan bahwa working memory (WM) memainkan peran penting dalam mengabaikan informasi tidak relevan sehingga hanya informasi relevan saja yang bekerja pada sistem working memory. Studi lainnya melaporkan bahwa inhibition control (IC) diperlukan untuk menghambat stimulus yang tidak relevan dan menghambat respons yang tidak dihendaki. WM dan IC adalah dua konstrak kognitif yang berbeda dan keduanya memberikan respons pada informasi tidak relevan. Namun, bagaimanakah dinamika kedua konstrak tersebut merespons informasi tidak relevan? Studi literatur kali ini bermaksud untuk menguraikan: (a) konsep mengenai working memory (WM) dan inhibitory control (IC); (b) mekanisme neural pada informasi yang tidak relevan; (c) mekanisme neural working memory dan inhibitory control pada informasi yang tidak relevan. Studi literatur ini menyimpulkan bahwa kapasitas working memory dan inhibitory control merupakan mekanisme kontrol kognitif terhadap informasi tidak relevan. Prefrontal cortex pada otak teraktivasi ketika working memory dan inhibitory control merespons informasi tidak relevan. Namun, working memory hanya menandai atau mengabaikan informasi tidak relevan sementara inhibitory control menghambat informasi tidak relevan. Inhibitory control memperkuat dan meningkatkan kinerja working memory ketika informasi tidak relevan tidak hanya cukup untuk diabaikan saja.

Keywords


informasi tidak relevan, inhibitory control; neuropsikologi; working memory

Full Text: XML

DOI: 10.22146/buletinpsikologi.54048

References


Abdul Hamid, K., Yusoff, A. N., Rahman, S., Osman, S. S., Azmi, N. H., Surat, S., & Ahmad Marzuki, M. (2019). Cortical differential responses during divergent thinking tasks after creativity stimulation. Psychology & Neuroscience, 12(3), 342–362. https://doi.org/10.1037/pne0000168

Almaric, M., & Dehaene, S. (2016). Origins of the brain networks for advanced mathematics in expert mathematicians. Proceedings of the National Academy of Science, 113(18), 4909-4917. https://doi.org/10.1073/pnas.1603205113

Ahveninen, J., Seidman, L. J., Chang, W-T., Hämäläinin, M., & Huang, S. (2017). Suppression of irrelevant sounds during auditory working memory. NeuroImage, 161, 1-8. https://dx.doi.org/10.1016/j.neuroimage.2017.08.040

Arnsten, A. F. T., Raskind, M. A., Taylor, F. B., & Connor, D. F. (2015). The effects of stress exposure on prefrontal cortex: Translating basic research into successful treatments for post-traumatic stress disorder. Neurobiology of Stress, 1, 89–99. https://doi.org/10.1016/j.ynstr.2014.10.002

Artuso, C., & Palladino, P. (2019). Long-term memory effects on working memory updating development. PLoS ONE, 14(5), e0217697. https://doi.org/10.1371/journal.pone.0217697

Aydmune, Y., Introzzi, S., Zamora, E., & Stelzer, F. (2019). Inhibiting processes and fluid intelligence: A performance at early years of schooling. International Journal of Psychological Research, 13(1), 29-39. https://doi.org/10.21500/20112084.4231

Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63, 1-29. https://doi.org/10.1146/annurev-psych-120710-100422

Baier, B., Karnath, H. O., Dietrich, M., Birklein, F., Heinze, C., & Müller, N. (2010). Keeping memory clear and stable – The contribution of human basal ganglia and prefrontal cortex to working memory. Journal of Neuroscience, 30(29), 9788-9792. https://doi.org/10.1523/jneurosci.1513-10.2010

Banks, S. J., Eddy, K. T., Angstadt, M., Nathan, P. J., & Phan, K. L. (2007). Amygdala-frontal connectivity during emotion regulation. Social cognitive and Affective Neuroscience, 2(4), 303–312. https://doi.org/10.1093/scan/nsm029

Blair, C., Knipe, H., & Gamson, D. A. (2008). Is there a role for executive functions in the development of mathematics ability? Mind, Brain, and Education, 2(2), 80-89. https://doi.org/10.1111/j.1751-228X.2008.00036.x

Blasiman, R. N., & Was, C. A. (2018). Why is working memory performance unstable? A review of 21 factors. Europe’s Journal of Psychology, 14(1), 188-231. https://dx.doi.org/10.5964/ejop.v14i1.1472

Blumenfeld, H., & Marian, V. (2014). Cognitive control in bilinguals: Advantages in stimulus–stimulus inhibition. Bilingualism: Language and Cognition, 17(3), 610-629. https://dx.doi.org/10.1017/S1366728913000564

Bocincova, A., & Johnson, J. (2019). The time course of encoding and maintenance of task-relevant versus irrelevant object features in working memory. Cortex, 111, 196-209. https://doi.org/10.1016/j.cortex.2018.10.013

Borella, E., & de Ribaupierre, A. (2013). The role of working memory, inhibition, and processing speed in text comprehension in children. Learning and Individual Differences, 34, 86-92. https://doi.org/10.1016/j.lindif.2014.05.001

Brookman-Byrne, A., Mareschal, D., Tolmie, A. K., & Dumontheil, I. (2018). Inhibitory control and counterintuitive science and maths reasoning in adolescence. PloS ONE, 13(6), e0198973. https://doi.org/10.1371/journal.pone.0198973

Brooks, S. J., Funk, S. G., Young, S. Y., & Schiöth, H. B. (2017). The role of working memory for cognitive control in anorexia nervosa versus substance use disorder. Frontiers in Psychology, 8, 1651. https://doi.org/10.3389/fpsyg.2017.01651

Brosch, T., Schiller, D., Mojdehbakhsh, R., Uleman, J. S., & Phelps, E. A. (2013). Neural mechanisms underlying the integration of situational information into attribution outcome. Social Cognitive and Affective Neuroscience, 8(6), 640-646. https://doi.org/10.1093/scan/nst019

Burhan, A. M., Anazodo, U. C., Chung, J. K., Arena, A., Graff-Guerrero, A., & Mitchell, D. G. V. (2016). The effect of task-irrelevant fearful-face distractor on WM processing in mild cognitive impairement versus healthy control: An exploratory fMRI study in female participants. Behavioral Neurology, 2016, 1637392. https://doi.org/10.1155/2016/1637392

Chamorro, Y., Treviño, M., & Matute, E. (2017). Educational and cognitive predictors of pro- and antisaccadic performance. Frontiers in Psychology, 8, 2009. https://doi.org/10.3389/fpsyg.2017.02009

Choi, W., Desai, R. H., & Henderson, J. M. (2014). The neural substrates of natural reading: A comparison of normal and nonword text using eyetracking and fMRI. Frontiers in Human Neuroscience, 8, 1024. https://doi.org/10.3389/fnhum.2014.01024

Chiappe, P., Hasher, L., & Siegel, L. S. (2000). Working memory, inhibitory control, and reading disability. Memory & Cognition, 28(1), 8–17. https://doi.org/10.3758/BF03211570

Clapp, W. C., Rubens, M. T., & Gazzaley, A. (2010). Mechanisms of working memory disruption by external interference. Cerebral Cortex, 20(4), 859–872. https://doi.org/10.1093/cercor/bhp150

Constatinidis, C., & Luna, B. (2019). Neural substrates of inhibiting control maturation in adolescence. Trends in Neuroscience, 42(9), 604-616. https://doi.org/10.1016/j.tins.2019.07.004

Cowan, N. (2014). Working memory underpins cognitive development, learning, and education. Educational Psychology Review, 26(2), 197–223. https://doi.org/10.1007/s10648-013-9246-y

Cowan, N., & Morey, C. C. (2006). Visual working memory depends on attentional filtering. Trends in Cognitive Sciences, 10(4), 139–141. https://doi.org/10.1016/j.tics.2006.02.001

Crone, E.A., Wendelken, C., Donchve,S., & van Leijenhorst, L. (2006). Neurocognitive development of the ability to manipulate information in working memory. Proceedings of the National Academy of Science, 103(24), 9315-9320. https://doi.org/10.1073/pnas.0510088103

De Houwer, J., Hughes, S., & Barnes-Holmes, D. (2016). Associative learning as higher order cognition: Learning in human and nonhuman animals from the perspective of propositional theories and relational frame theory. Journal of Comparative Psychology, 130(3), 215–225. https://doi.org/10.1037/a0039999

Derrfuss, J., Ekman, M., Hanke, M., Tittgemeyer, M., & Fiebach, C. J. (2017). Distractor-resistant short-term memory is supported by transient changes in neural stimulus representations. Journal of Cognitive Neuroscience, 29(9), 1547–1565. https://doi.org/10.1162/jocn_a_01141

Dillon, D. G., & Pizzagalli, D. A. (2007). Inhibition of action, thought, and emotion: A selective neurobiological review. Applied & Preventive Psychology, 12(3), 99–114. https://doi.org/10.1016/j.appsy.2007.09.004

Durston, S., Thomas, K. M., Yang, Y., Ulug, A. M., Zimmerman, R. D., & Casey, B. J. (2002). A neural basis for the development of inhibitory control. Developmental Science, 5(4), F9-F16. https://doi.org/10.1111/1467-7687.00235

Egner, T., Elano, M., & Hirsch, J. (2006). Separate conflict–specific cognitive control mechanisms in the human brain. Neuroimage, 35(2), 940-948. https://doi.org/10.1016/j.neuroimage.2006.11.061

El Massioui, N., Lamirault, C., Yagüe, S., Adjeroud, N., Garces, D., Maillard, A.,…& Doyère, V. (2016). Impaired decision making and loss of inhibitory-control in a rat model of Huntington disease. Frontiers in Behavioral Neuroscience, 10, 204. https://doi.org/10.3389/fnbeh.2016.00204

Endres, M. J., Houpt, J. W., Dunkin, C., & Fin, P. R. (2015). Working memory capacity and redundant information processing efficiency. Frontiers in Psychology, 6, 594, https://dx.doi.org/10.3389/fpsyg.2015.00594

Eriksson, J., Vogel, E. K., Lansner, A., Bergström, F., & Nyberg, L. (2015). Neurocognitive architecture of working memory. Neuron, 88(1), 33–46. https://doi.org/10.1016/j.neuron.2015.09.020

Fabius, J. H., Mathôt, S., Schut, M. J., Nijboer, T. C. W., & der Stigchel, S. V. (2017). Focus of spatial attention during spatial working memory maintenance: Evidence from pupillary light response. Visual Cognition, 25(1-3), 10-20. https://doi.org/10.1080/13506285.2017.1311975

Fallon, S. T., Dolfen, N., Parolo, F., Zokei, N., & Husain, M. (2019). Task–irrelevant financial losses inhibit the removal of information from working memory. Scientific Reports, 9, 1673. https://doi.org/10.1038/s41598-018-36826-x

Fallon, S. T., Mattiesing, R. M., Dolfen, N., Manohar, S. G., & Husain, M. (2018). Ignoring versus updating in working memory reveal differential roles of attention and feature binding. Cortex, 107, 50-63. https://doi.org/10.1016/j.cortex.2017.12.016

Fastame, M. C. (2020). Visual and spatial working memory skills implicated in copying and drawing from memory of The Rey-Osterrieth Complex Figure. What relationship in the school-aged children? Cognitive Development, 53, 100826. https://doi.org/10.1016/j.cogdev.2019.100826

Finkelmeyer, A., Kellerman, T., Bude, D., Nießen, T., Schwenzer, M., Mathiak, K., & Reske, M. (2010). Effects of aversive odour presentation on inhibitory control in the stroop colour–word interference task. BMC Neuroscience, 11, 131. https://doi.org/10.1186/1471-2202-11-131

Gaspelin, N., & Luck, S. J. (2018). The role of inhibition in avoiding distraction by salient stimuli. Trends in Cognitive Sciences, 22(1), 79–92. https://doi.org/10.1016/j.tics.2017.11.001

Geng, H., Song, Q., Li, Y., & Zhu, Y. (2005). The effect of attention to distractor on inhibitory process in selective attention. Chinese Science Bulletin, 50(16), 1743-1750. https://doi.org/10.1360/982005-516

Greiff, S., Wüstenberg, S., Goetz, T., Vainikainen, M. P., Hautamäki, J., & Bornstein, M. H. (2015). A longitudinal study of higher-order thinking skills: working memory and fluid reasoning in childhood enhance complex problem solving in adolescence. Frontiers in Psychology, 6, 1060. https://doi.org/10.3389/fpsyg.2015.01060

He, N., Rolls, E. T., Zhao, W., & Guo, S. (2019). Predicting human inhibitory control from brain structural fMRI. Brain Imaging and Behavior, 14(6), 2148-2158. https://doi.org/10.1007/s11682-019-00166-9

Heathcote, A., Coleman, J. R., Eidels, A., Watson, J. M., Houpt, J., & Strayer, D. L. (2015). Working memory’s workload capacity. Memory & Cognition, 43, 973-989. https://doi.org/10.3758/s13421-015-0526-2

Howard, C. J., Pole, R., Montgomery, P., Woodward, A., Guest, D., Standen, B.,….& Crowe, E. M. (2020). Visual spatial attention and spatial working memory do not draw on shared capacity-limited core processes. Quarterly Journal of Experimental Psychology, 73(5), 799-818. https://doi.org/10.1177/1747021819897882

Huang, J., Kahana, M. J., & Sekuler, R. (2009). A task-irrelevant stimulus attribute affects perception and short-term memory. Memory & Cognition, 37(8), 1088–1102. https://doi.org/10.3758/MC.37.8.1088

Ivancovsky, T., Kleinmintz, O., Lee, J., Kurman, J., & Shamay-Tsoory, S. G. (2018). The neural underpinings of cross-cultural differences in creativity. Human Brain Mapping, 39(11), 4493-4508. https://doi.org/10.1002/hbm.24288

Jacqui, A. M., Miriam, H. B., Judith, A. C., & Peter, J. A. (2014). Age-related differences in inhibitory control in the early school years. Child Neuropsychology, 20(5), 509-526. https://doi.org/10.1080/09297049.2013.822060

Jaeger, A. (2013). Inhibitory control and the adolescent brain: A review of fMRI research. Psychology & Neuroscience, 6(1), 23-30. http://dx.doi.org/10.3922/j.psns.2013.1.05

Janowich, J., Mishra, J., & Gazzaley, A. (2015). A cognitive paradigm to investigate interference in working memory by distractions and interruptions. Journal of Visualized Experiments, 101, e52226. https://doi.org/10.3791/52226

Karlsson, J., Jolles, D., Koornneef, A., van den Broek, P., & Leijenhorst, L.V. (2019). Individual differences in children’s comprehension of temporal relation: Dissociable contributions of working memory capacity and working memory updating. Journal of Experimental Child Psychology, 185, 1-18. https://doi.org/10.1016/j.jecp.2019.04.007

Keijzer M. (2013). Working memory capacity, inhibitory control and the role of L2 proficiency in aging L1 Dutch speakers of near-native L2 English. Brain Sciences, 3(3), 1261–1281. https://doi.org/10.3390/brainsci3031261

Kesler, S. R., Sheau, K., Koovakkattu, D., & Reiss, A. L. (2011). Changes in frontal-parietal activation and math skills performance following adaptive number sense training: preliminary results from a pilot study. Neuropsychological Rehabilitation, 21(4), 433–454. https://doi.org/10.1080/09602011.2011.578446

Koizumi, A., Lau, H., Shimada, Y., & Kondu, H.M. (2018). The effect neurochemical balance in the anterior cingulate cortex and dorsolateral prefrontal cortex on volitional control under irrelevant distraction. Consciousness and Cognition, 59, 104-111. https://doi.org/10.1016/j.concog.2018.01.001

Künstler, E., Finke, K., Günther, A., Klingner, C., Witte, O., & Bublak, P. (2018). Motor-cognitive dual-task performance: Effects of a concurrent motor task on distinct components of visual processing capacity. Psychological Research, 82(1), 177–185. https://doi.org/10.1007/s00426-017-0951-x

Laing, P. A. F., Burns, N., & Baetu, I. (2019). Individual differences in anxiety and fear learning: The role of working memory capacity. Acta Psychologia, 193, 42-54. https://doi.org/10.1016/j.actpsy.2018.12.006

Leontyev, A., Sun, S., Wolfe, M., & Yamauchi, T. (2018). Augmented go/no-go task: Mouse cursor motion measures improve ADHD symptom assessment in healthy college students. Frontiers in Psychology. 9, 496. https://doi.org/10.3389/fpsyg.2018.00496

Lilienthal, L., Rose, N. S., Tamez, E., Myerson, J., & Hale, S. (2015). Individuals with low working memory spans show greater interference from irrelevant information because of poor source monitoring, not greater activation. Memory & Cognition, 43(3), 357–366. https://doi.org/10.3758/s13421-014-0465-3

Linck, J. A., & Weiss, D. J. (2015). Can working memory and inhibitory control predict second language learning in the classroom? SAGE Open, 5(4), 1-11. https://doi.org/10.1177/2158244015607352

Little, D. R., Lewandowsky, S., & Craigg, S. (2014). Working memory capacity and fluid abilities: The more difficult the item, the more is better. Frontiers in Psychology, 5, 239. https://doi.org/10.3389/fpsyg.2014.00239

Lockwond, P. L., & Wittmann, M. K. (2018). Ventral anterior cingulate cortex and social decision-making. Neuroscience & Biobehavioral Reviews, 92, 187-191. https://doi.org/10.1016/j.neubiorev.2018.05.030

Luck, S. T., & Vogel, E. K. (2013). Visual working memory capacity: from psychophysics and neurobiology to individual differences. Trends in Cognitive Science, 17(8), 391-400. https://doi.org/10.1016/j.tics.2013.06.006

Luijten, M., Littel, M., & Franken, I. H. A. (2011). Deficits in inhibitory control in smokers during a go/nogo task: An investigation using event-related brain potentials. PLoS ONE, 6(4), e18898. https://dx.doi.org/10.1371/journal.pone.0018898

Lustig, C., Hasher, L., & Tonev, S. T. (2001). Inhibitory control over the present and the past. European Journal of Cognitive Psychology, 13(1-2), 107-122. https://doi.org/10.1080/09541440126215

Lv, K. (2015). The involvement of working memory and inhibition functions in the different phases of insight problem solving. Memory & Cognition, 43, 709-722. https://doi.org/10.3758/s13421-014-0498-7

Macdonald, J. A., Beauchamp, M. H., Crigan, J. A., & Anderson, P. J. (2014). Age–related differences in inhibitory control in the early school years. Child Neuropsychology, 20(5), 509-526. https://doi.org/10.1080/09297049.2013.822060

Manza, P., Hau, C, L, H., & Leung, H-C. (2014). Alpha power gates relevant information during working memory updating. Journal of Neuroscience, 34(17), 5998-6002. https://doi.org/10.1523/JNEUROSCI.4641-13.2014

Maraver, M. J., Bajo, M. T., & Gomez-Ariza, C. J., (2016). Training on working memory and inhibitory control in young adults. Frontiers in Human Neuroscience, 10, 588. https://doi.org/10.3389/fnhum.2016.00588

Martyr, A., Boycheva, E., & Kudlicka, A. (2019). Assessing inhibitory control in early-stage Alzheimer’s and Parkinson’s disease using the Hayling Sentence Completion Test. Journal of Neuropsychology, 13(1), 67–81. https://doi.org/10.1111/jnp.12129

McRae, K., Hughes, B., Chopra, S., Gabrieli, J. D., Gross, J. J., & Ochsner, K. N. (2010). The neural bases of distraction and reappraisal. Journal of Cognitive Neuroscience, 22(2), 248–262. https://doi.org/10.1162/jocn.2009.21243

Medina, L. D., Sadler, M., Yeh, M., Filoteo, J. V., Woods, S. P., & Gilbert, P. E. (2019). Collectivism is associated with greater neurocognitive fluency in older adults. Frontiers in Human Neuroscience, 13, 122. https://doi.org/10.3389/fnhum.2019.00122

Mertes, C., Wascher, E., & Schneider, D. (2016). From capture to Inhibition: How does irrelevant information influence visual search? Evidence from a spatial cuing paradigm. Frontiers in Human Neuroscience, 10, 232. https://dx.doi.org/10.3389/fnhum.2016.00232

Meyer, H. C., & Bucci, D. J. (2016). Neural and behavioral mechanisms of proactive and reactive inhibition. Learning Memory, 23(10), 504-514. https://doi.org/10.1101/lm.040501.115

Michal, A. L., Lleras, A., & Beck, D. M. (2014). Relative contributions of task–relevant and task–irrelevant dimensions in priming of pop–out. Journal of Vision, 14(12), 14. https://doi.org/10.1167/14.12.14

Milham, M. P., Erickson, K. I., Banich, M. T., Kramer, A. F., Webb, A., Wszalea, T., & Cohen, N. T. (2002). Attentional control in the aging brain: Insight from an fMRI study of the stroop task. Brain and Cognition, 49(3), 277-296. https://doi.org/10.1006/brcg.2001.1501

Miyake, A., & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions: Four general conclusions. Current Directions in Psychological Science, 21(1), 8-14. https://doi.org/10.1177/0963721411429458

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., & Howerter, A. (2000). The unity and diversity of executive function and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49-100. https://doi.org/10.1006/cogp.1999.0734

Moehring, A., Schroeders, U., & Wilhelm, O. (2018). Knowledge is power for medical assistants: Crystallized and fluid intelligence as predictors of vocational knowledge. Frontiers in Psychology, 9, 28. https://doi.org/10.3389/fpsyg.2018.00028

van Moorselar, D., & Slagter, H. A. (2019). Learning what is irrelevant or relevant: Expectations facilitate distractor inhibition and target facilitation through distinct neural mechanisms. Journal of Neuroscience, 39(35), 6953-6967. https://doi.org/10.1523/JNEUROSCI.0593-19.2019

Na, D. G., Ryu, J. W., Byun, H. S., Choi, D. S., Lee, E. J., Chung, W. I., … Han, B. K. (2000). Functional MR imaging of working memory in the human brain. Korean Journal of Radiology, 1(1), 19–24. https://doi.org/10.3348/kjr.2000.1.1.19

Nakagawa, S., Takeuchi, H., Taki, Y., Nouchi, R., Kotozaki, Y., Shinada, T., ….., & Kawashima, R. (2019). Mean diffusity related collectivism among university students in Japan. Scientific Reports, 9, 1338. https://doi.org/10.1038/s41598-018-37995-5

Nasr, S., Moeeny, A., & Esteky, H. (2008). Neural correlate of filtering of irrelevant information from visual working memory. PLoS One, 3(9), e3282. https://doi.org/10.1371/journal.pone.0003282

Neill, W. T., Valdes, L. A., & Terry, K. M. (1995). Selective attention and the inhibitory control of cognition. Dalam F. N. Dempster & C. J. Brainerd (Eds.), Interference and Inhibition in Cognition (hal. 207-261). Academic Press.

Noreen, S., & MacLeod, M. D. (2015). What do we really know about cognitive inhibition? Task demands and inhibitory effects across a range of memory and behavioural tasks. PloS One, 10(8), e0134951. https://doi.org/10.1371/journal.pone.0134951

Oberauer, K. (2019). Working memory and attention – A conceptual analysis and review. Journal of Cognition, 2(1), 36. http://doi.org/10.5334/joc.58

Oswald, J. P., Trembly, S., & Jones, D. M. (2000). Disruption of comprehension by the meaning of irrelevant sound. Memory, 8(5), 345-350. https://doi.org/10.1080/09658210050117762

Pearson, J. M., Heilbronner, S. R., Barack, D. L., Hayden, B. Y., & Platt, M. L. (2011). Posterior cingulate cortex: Adapting behavior to a changing world. Trends in Cognitive Sciences, 15(4), 143–151. https://dx.doi.org/10.1016/j.tics.2011.02.002

Pennequin, V., Sorel, O., & Mainguy, M. (2010). Metacognition, executive functions and aging. The effect of training in the use of metacognitive skills to solve mathematical word problems. Journal of Adult Development, 17, 168-176. https://doi.org/10.1007/s10804-010-9098-3

Pimperton, H., & Nation, K. (2010). Suppressing irrelevant information from working memory: Evidence for domain-specific deficits in poor comprehenders. Journal of Memory and Language, 62(4), 380-391. https://doi.org/10.1016/j.jml.2010.02.005

Piotrowski, K. T., Orzechowski, J., & Stettner, Z. (2019). The nature of inhibition in working memory search task. Journal of Cognitive Psychology, 31(3), 285-302. https://doi.org/10.1080/20445911.2019.1591421

Pisoni, D. B., & Cleary, M. (2003). Measures of working memory span and verbal rehearsal speed in deaf children after cochlear implantation. Ear and Hearing, 24(1 Suppl), 106S–20S. https://doi.org/10.1097/01.aud.0000051692.05140.8e

Plancher, G., Gyselinck, V., & Piolino, P. (2018). The integration of realistic episodic memories relies on different working memory processing: Evidence from virtual navigation. Frontiers in Psychology, 9, 47. https://dx.doi.org/10.3389/fpsyg.2018.00047

Poirel N, Borst G, Simon G, Rossi S, Cassotti M, Pineau A, …., Houdé, O. (2012). Number conservation is related to children’s prefrontal inhibitory control: An fMRI study of a Piagetian task. PLoS One, 7(7): e40802. https://doi.org/10.1371/journal.pone.0040802

Polk, T. A., Drake, R. M., Jonides, J. J., Smith, M. R., & Smith, E. E. (2008). Attention enhances the neural processing of relevant features and suppresses the processing of irrelevant features in humans: A functional magnetic resonance imaging study of the Stroop task. Journal of Neuroscience, 28(51), 13786–13792. https://dx.doi.org/10.1523/JNEUROSCI.1026-08.2008

Pornpattananangkul, N., Hariri, A. R., Harada, T., Mano, Y., Komeda, H., Parrish, T. B., ….& Chiao, J. Y. (2016). Cultural influences on neural basis of inhibitory control. Neuroimage, 139, 114-126. https://doi.org/10.1016/j.neuroimage.2016.05.061

Pretto, M. P., Hartmann, L., Garcia – Burgos, D., Sallard, E., & Spierer, L. (2019). Stimulus reward value interacts with training-induced plasticity in inhibitory control. Neuroscience, 421, 82-94. https://doi.org/10.1016/j.neuroscience.2019.10.010

Preuss, H., Leister, L., Pinnow, M., & Legenbauer, T. (2019). Inhibitory control pathway to disinhibited eating: A matter of perspective. Appetite, 141, 104297. https://doi.org/10.1016/j.appet.2019.05.028

Roets, A., Hiel, A. V., Cornelis, I., & Soetans, B. (2008). Determinants of task performance and invested effort: A need for closure by relative cognitive capacity interaction analysis. Personality and Social Psychology Bulletin, 34(6), 779-792. https://doi.org/10.1177/0146167208315554

Rolls, E. T. (2019). The cingulate cortex and limbic system for emotion, action and memory. Brain, Structure and Function, 224(9), 3001-3018. https://doi.org/10.1007/s00429-019-01945-2

Rop, G., van Wermeskerken, M., de Nooijer, J.A., Verkoeijen, P. P. J. L., & van Goget, T. (2018). Task experience as a boundary condition for the negative effects of irrelevant Information on learning. Journal Educational Review, 30, 229-253. https://doi.org/10.1007/s10648-016-9388-9

Roos, L. E., Knight, E. L., Beauchamp, K. G., Berkman, E. T., Faraday, K., Hyslop, K., & Fisher, P. A. (2017). Acute stress impairs inhibitory control based on individual differences in parasympathetic nervous system activity. Biological Psychology, 125, 58–63. https://doi.org/10.1016/j.biopsycho.2017.03.004

Rudner, M., & Rönnberg, J. (2008). The role of episodic buffer in working memory for language processing. Cognitive Processing, 9(1), 19-28. https://doi.org/10.1007/s10339-007-0183-x

Sasaki, T. (2009). The role of the central executive in associative learning. Psychologia, 52, 80-90.

Schilling, C., Kühn, S., Paus, T., Romanowski, A., Banaschewski, T., Barbot, A., …., & the IMAGEN consortium (2013). Cortical thickness of superior frontal cortex predicts impulsiveness and perceptual reasoning in adolescence. Molecular Psychiatry, 18(5), 624-630. https://doi.org/10.1038/mp.2012.56

Schurgin, M. W., Cunningham, C.A., Egeth, H. E., & Brady,T. F. (2018). Visual long-term memory can replace active maintenance in visual working memory. bioRxiv, 38184. https://doi.org/10.1101/381848

Shah, P., & Miyake, A. (1999). Models of working memory: An introduction. Dalam P. Shah, & A. Miyake, (Eds). Models of Working Memory (hal.1-27). Cambridge University Press.

Shing, Y. L., Lindenberger, U., Diamond, A., Li, S. C., & Davidson, M. C. (2010). Memory maintenance and inhibitory control differentiate from early childhood to adolescence. Developmental Neuropsychology, 35(6), 679–697. https://dx.doi.org/10.1080/87565641.2010.508546

Siebert, P. S., & Ellis, H. C. (1991). Irrelevant thoughts, emotional mood styles, and cognitive task performance. Memory & Cognition, 19, 507-513. https://doi.org/10.3758/BF03199574

Simon, S. S., Tusch, E. S., Holcomb, P. J., & Daffner, K. R. (2016). Increasing working memory load reduces processing of cross-modal task-irrelevant stimuli even after controlling for task difficulty and executive capacity. Frontiers in Human Neuroscience, 10, 380. https://doi.org/10.3389/fnhum.2016.00380

Singh, K. A., Gignac, G. E., Brydges, C. R., & Ecker, U.K.H. (2018). Working memory capacity mediates the relationship between removal and fluid intelligence. Journal of Memory and Language, 101, 18-36. https://doi.org/10.1016/j.jml.2018.03.002

Starr, D. A. (2011). Prefrontal-hippocampal pathways underlying inhibitory control over memory. Physiology & Behavior, 17(1), 139-148. https://doi.org/10.1016/j.nlm.2015.11.008

Strobel, B., Lindner, M.A., Saß, S., & Köller, O. (2018). Task-irrelevant data impair processing of graph reading tasks: An eye tracking study. Learning and Instruction, 55, 139-147. https://doi.org/10.1016/j.learninstruc.2017.10.003Swanson, H. L. (2016). Word problem solving, working memory and serious math difficulties: Do cognitive strategies really make a difference? Journal of Applied Research in Memory and Cognition, 5(4), 368–383. https://doi.org/10.1016/j.jarmac.2016.04.012Swanson, H.L. (2015). Cognitive strategy interventions improve word problem solving and working memory in children with math disabilities. Frontiers in Psychology, 6, 109. https://dx.doi.org/10.3389/fpsyg.2015.01099Swanson, H. L., Lussier, C. M., & Orosco, M. J. (2013). Cognitive strategies, working memory, and growth in word problem solving in children with math difficulties. Journal of Learning Disabilities, 48(4), 339-358. https://doi.org/10.1177/0022219413498771

Swanson, H. L., Moran., A. S., Bocian., K., Lussier, C., & Zheng, X. (2012). Generative strategies, working memory and word problem solving accuracy in children at risk for math disabilities. Learning Disabilities Quarterly, 36(4), 202-214. https://doi.org/10.1177/0731948712464034

Tiego, J., Testa, R., Bellgrove, M. A., Pantelis, C., & Whittle, S. (2018). A hierarchical model of inhibitory control. Frontiers in Psychology, 9, 1339. https://doi.org/10.3389/fpsyg.2018.01339

Toepper, M., Gebhardt, H., Bebio, T., Thomas, C., Driessen, M., Bischoff, M.,….& Sammer, G. (2010). Functional correlates of distractor suppression during spatial working memory encoding. Neuroscience, 165(4), 1244-1253. https://doi.org/10.1016/j.neuroscience.2009.11.019

Triplett, R. L., Velannova, K., Luna, B., Padmanathan, A., Gaillard, M. D., & Asato, M. R. (2014). Investigating inhibitory control in children with epilepsy: An fMRI study. Epilepsia, 55(10), 1667-1676. https://doi.org/10.1111/epi.12768

Vara, A. S., Pang, E. W., Vidal, J., Anagnostou, E., & Taylor, M. J. (2014). Neural mechanisms of inhibitory control continue to mature in adolescence. Developmental Cognitive Neuroscience, 10, 129–139. https://doi.org/10.1016/j.dcn.2014.08.009

Valle,T. M., Gómez-Ariza, C. J., & Bajo, M.T. (2019). Inhibitory control during selective retrieval may hinder subsequent analogical thinking. PLoS One, 14(2), e0211881. https://doi.org/10.1371/journal.pone.0211881

Veer, I. M., Luyten, H., Mulder, H., van Tuijl, C., & Sleegers, P. J. C. (2017). Selective attention relates to the development of executive functions in 2.5- to 3-year-olds: A longitudinal study. Early Childhood Research Quarterly, 41, 84–94. https://doi.org/10.1016/j.ecresq.2017.06.005

Vellage, A. K., Becke, A., Strumpf, H., Baier, B., Schönfeld, M. A., Hopf, J. M., & Müller, N. G. (2016). Filtering and storage working memory networks in younger and older age. Brain and Behavior, 6(11), e00544. https://dx.doi.org/10.1002/brb3.544

Wais, P. E., & Gazzaley, A. (2011). The impact of auditory distraction on retrieval of visual memories. Psychonomic Bulletin & Review, 18(6), 1090-1097. https://doi.org/10.3758/s13423-011-0169-7

Waters, G., & Caplan, D. (2003). The reliability and stability of verbal working memory measures. Behavior Research Methods, Instruments & Computer, 35(4), 550-564. https://doi.org/10.3758/BF03195534

Wei, P., Yu, H., Müller, H. J., Pollman, S., & Zhou, X. (2018). Differential brain mechanism for processing distracting information in task – relevant and irrelevant dimensions in visual search. Human Brain Mapping, 40(1), 110-124. https://doi.org/10.1002/hbm.24358

West, R., & Alain, C. (2000). Age‐related decline in inhibitory control contributes to the increased Stroop effect observed in older adults. Psychophysiology, 37(2), 179-189. https://doi.org/10.1111/1469-8986.3720179

Wilcockson, T. D. W., Mardanbegi, D., Sawyer, P., Gellersen, H., Xia, B., & Crawford, T. J. (2019). Oculomotor and inhibitory control in dyslexia. Frontiers in Systems Neuroscience, 12, 66. https://doi.org/10.3389/fnsys.2018.00066

Wilhelm, O., Hildebrandt, A., & Oberauer, K. (2013). What is working memory capacity, and how can we measure it? Frontiers in Psychology, 4, 433. https://doi.org/10.3389/fpsyg.2013.00433

Woumans, E., Ameloot, S., Keuleers, E., & Van Assche, E. (2019). The relationship between second language acquisition and nonverbal cognitive abilities. Journal of Experimental Psychology: General, 148(7), 1169–1177. https://doi.org/10.1037/xge0000536

Xu, K. S., Mayse, J. D., & Courtney, M. S. (2019). Evidence for selective adjustments of inhibitory control in variant of the stop signal task. Quarterly Journal of Experimental Psychology, 72(4), 818-831. https://doi.org/10.1177/1747021818768721

Yamagato, S., Yamaguchi, S., & Kobayashi, S. (2004). Impaired novelty processing in apathy after subcortical stroke. Stroke, 35(8), 1935-1940. https://doi.org/10.1161/01.str.0000135017.51144.c9

Yang, Z., & Tang, A. C. (2011). Novelty-induced enhancement in spatial memory: Is infancy critical period?. Behavioral Brain Research, 219(1), 47-54. https://doi.org/10.1016/j.bbr.2010.12.020

Yin, J., Zhou, J., Xu, H., Liang, J., Gao, Z., & Shen, M. (2012). Does high memory load kick task-irrelevant information out of visual working memory? Psychonomic Buletin & Review, 19, 218-224. https://doi.org/10.3758/s13423-011-0201-y

Zanto, T. P., & Gazzaley, A. (2009). Neural suppression of irrelevant information underlies optimal working memory performance. Journal of Neuroscience, 29(10), 3059-3066. https://doi.org/10.1523/JNEUROSCI.4621-08.2009

Zeinti, M., & Kliegel, M. (2007). The role of inhibitory control in age – related operation span performance. European Journal of Ageing, 4(4), 213-217. https://dx.doi.org/10.1007/s10433-007-0066-0

Zelazo, P. D., & Lee, W. S. C. (2010). Brain development: An overview. Dalam R. M. Lerner & W. F. Overton (Eds.), The Handbook of Life-span development, volume 1: Cognition, biology, and methods, (hal.89-114). Wiley.

Zhang, L., Yu, S., Li, B., & Wang, J. (2017). Can students identity the relevant information to solve the problem?. Journal of Educational Technology & Society, 20(4), 288-299.

Zhao, X., Chen, L., & Maos, J. H. R. (2016). Training and transfer effect of response inhibition training in children and adults. Development Science, 21(1), e12511. https://doi.org/10.1111/desc.12511


Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Buletin Psikologi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.