Working Memory Versus Inhibitory Control: Sebuah Kajian Neuropsikologi Mengenai Peran Informasi Tidak Relevan
Abstract
Keywords
DOI: 10.22146/buletinpsikologi.54048
References
Abdul Hamid, K., Yusoff, A. N., Rahman, S., Osman, S. S., Azmi, N. H., Surat, S., & Ahmad Marzuki, M. (2019). Cortical differential responses during divergent thinking tasks after creativity stimulation. Psychology & Neuroscience, 12(3), 342–362. https://doi.org/10.1037/pne0000168
Almaric, M., & Dehaene, S. (2016). Origins of the brain networks for advanced mathematics in expert mathematicians. Proceedings of the National Academy of Science, 113(18), 4909-4917. https://doi.org/10.1073/pnas.1603205113
Ahveninen, J., Seidman, L. J., Chang, W-T., Hämäläinin, M., & Huang, S. (2017). Suppression of irrelevant sounds during auditory working memory. NeuroImage, 161, 1-8. https://dx.doi.org/10.1016/j.neuroimage.2017.08.040
Arnsten, A. F. T., Raskind, M. A., Taylor, F. B., & Connor, D. F. (2015). The effects of stress exposure on prefrontal cortex: Translating basic research into successful treatments for post-traumatic stress disorder. Neurobiology of Stress, 1, 89–99. https://doi.org/10.1016/j.ynstr.2014.10.002
Artuso, C., & Palladino, P. (2019). Long-term memory effects on working memory updating development. PLoS ONE, 14(5), e0217697. https://doi.org/10.1371/journal.pone.0217697
Aydmune, Y., Introzzi, S., Zamora, E., & Stelzer, F. (2019). Inhibiting processes and fluid intelligence: A performance at early years of schooling. International Journal of Psychological Research, 13(1), 29-39. https://doi.org/10.21500/20112084.4231
Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63, 1-29. https://doi.org/10.1146/annurev-psych-120710-100422
Baier, B., Karnath, H. O., Dietrich, M., Birklein, F., Heinze, C., & Müller, N. (2010). Keeping memory clear and stable – The contribution of human basal ganglia and prefrontal cortex to working memory. Journal of Neuroscience, 30(29), 9788-9792. https://doi.org/10.1523/jneurosci.1513-10.2010
Banks, S. J., Eddy, K. T., Angstadt, M., Nathan, P. J., & Phan, K. L. (2007). Amygdala-frontal connectivity during emotion regulation. Social cognitive and Affective Neuroscience, 2(4), 303–312. https://doi.org/10.1093/scan/nsm029
Blair, C., Knipe, H., & Gamson, D. A. (2008). Is there a role for executive functions in the development of mathematics ability? Mind, Brain, and Education, 2(2), 80-89. https://doi.org/10.1111/j.1751-228X.2008.00036.x
Blasiman, R. N., & Was, C. A. (2018). Why is working memory performance unstable? A review of 21 factors. Europe’s Journal of Psychology, 14(1), 188-231. https://dx.doi.org/10.5964/ejop.v14i1.1472
Blumenfeld, H., & Marian, V. (2014). Cognitive control in bilinguals: Advantages in stimulus–stimulus inhibition. Bilingualism: Language and Cognition, 17(3), 610-629. https://dx.doi.org/10.1017/S1366728913000564
Bocincova, A., & Johnson, J. (2019). The time course of encoding and maintenance of task-relevant versus irrelevant object features in working memory. Cortex, 111, 196-209. https://doi.org/10.1016/j.cortex.2018.10.013
Borella, E., & de Ribaupierre, A. (2013). The role of working memory, inhibition, and processing speed in text comprehension in children. Learning and Individual Differences, 34, 86-92. https://doi.org/10.1016/j.lindif.2014.05.001
Brookman-Byrne, A., Mareschal, D., Tolmie, A. K., & Dumontheil, I. (2018). Inhibitory control and counterintuitive science and maths reasoning in adolescence. PloS ONE, 13(6), e0198973. https://doi.org/10.1371/journal.pone.0198973
Brooks, S. J., Funk, S. G., Young, S. Y., & Schiöth, H. B. (2017). The role of working memory for cognitive control in anorexia nervosa versus substance use disorder. Frontiers in Psychology, 8, 1651. https://doi.org/10.3389/fpsyg.2017.01651
Brosch, T., Schiller, D., Mojdehbakhsh, R., Uleman, J. S., & Phelps, E. A. (2013). Neural mechanisms underlying the integration of situational information into attribution outcome. Social Cognitive and Affective Neuroscience, 8(6), 640-646. https://doi.org/10.1093/scan/nst019
Burhan, A. M., Anazodo, U. C., Chung, J. K., Arena, A., Graff-Guerrero, A., & Mitchell, D. G. V. (2016). The effect of task-irrelevant fearful-face distractor on WM processing in mild cognitive impairement versus healthy control: An exploratory fMRI study in female participants. Behavioral Neurology, 2016, 1637392. https://doi.org/10.1155/2016/1637392
Chamorro, Y., Treviño, M., & Matute, E. (2017). Educational and cognitive predictors of pro- and antisaccadic performance. Frontiers in Psychology, 8, 2009. https://doi.org/10.3389/fpsyg.2017.02009
Choi, W., Desai, R. H., & Henderson, J. M. (2014). The neural substrates of natural reading: A comparison of normal and nonword text using eyetracking and fMRI. Frontiers in Human Neuroscience, 8, 1024. https://doi.org/10.3389/fnhum.2014.01024
Chiappe, P., Hasher, L., & Siegel, L. S. (2000). Working memory, inhibitory control, and reading disability. Memory & Cognition, 28(1), 8–17. https://doi.org/10.3758/BF03211570
Clapp, W. C., Rubens, M. T., & Gazzaley, A. (2010). Mechanisms of working memory disruption by external interference. Cerebral Cortex, 20(4), 859–872. https://doi.org/10.1093/cercor/bhp150
Constatinidis, C., & Luna, B. (2019). Neural substrates of inhibiting control maturation in adolescence. Trends in Neuroscience, 42(9), 604-616. https://doi.org/10.1016/j.tins.2019.07.004
Cowan, N. (2014). Working memory underpins cognitive development, learning, and education. Educational Psychology Review, 26(2), 197–223. https://doi.org/10.1007/s10648-013-9246-y
Cowan, N., & Morey, C. C. (2006). Visual working memory depends on attentional filtering. Trends in Cognitive Sciences, 10(4), 139–141. https://doi.org/10.1016/j.tics.2006.02.001
Crone, E.A., Wendelken, C., Donchve,S., & van Leijenhorst, L. (2006). Neurocognitive development of the ability to manipulate information in working memory. Proceedings of the National Academy of Science, 103(24), 9315-9320. https://doi.org/10.1073/pnas.0510088103
De Houwer, J., Hughes, S., & Barnes-Holmes, D. (2016). Associative learning as higher order cognition: Learning in human and nonhuman animals from the perspective of propositional theories and relational frame theory. Journal of Comparative Psychology, 130(3), 215–225. https://doi.org/10.1037/a0039999
Derrfuss, J., Ekman, M., Hanke, M., Tittgemeyer, M., & Fiebach, C. J. (2017). Distractor-resistant short-term memory is supported by transient changes in neural stimulus representations. Journal of Cognitive Neuroscience, 29(9), 1547–1565. https://doi.org/10.1162/jocn_a_01141
Dillon, D. G., & Pizzagalli, D. A. (2007). Inhibition of action, thought, and emotion: A selective neurobiological review. Applied & Preventive Psychology, 12(3), 99–114. https://doi.org/10.1016/j.appsy.2007.09.004
Durston, S., Thomas, K. M., Yang, Y., Ulug, A. M., Zimmerman, R. D., & Casey, B. J. (2002). A neural basis for the development of inhibitory control. Developmental Science, 5(4), F9-F16. https://doi.org/10.1111/1467-7687.00235
Egner, T., Elano, M., & Hirsch, J. (2006). Separate conflict–specific cognitive control mechanisms in the human brain. Neuroimage, 35(2), 940-948. https://doi.org/10.1016/j.neuroimage.2006.11.061
El Massioui, N., Lamirault, C., Yagüe, S., Adjeroud, N., Garces, D., Maillard, A.,…& Doyère, V. (2016). Impaired decision making and loss of inhibitory-control in a rat model of Huntington disease. Frontiers in Behavioral Neuroscience, 10, 204. https://doi.org/10.3389/fnbeh.2016.00204
Endres, M. J., Houpt, J. W., Dunkin, C., & Fin, P. R. (2015). Working memory capacity and redundant information processing efficiency. Frontiers in Psychology, 6, 594, https://dx.doi.org/10.3389/fpsyg.2015.00594
Eriksson, J., Vogel, E. K., Lansner, A., Bergström, F., & Nyberg, L. (2015). Neurocognitive architecture of working memory. Neuron, 88(1), 33–46. https://doi.org/10.1016/j.neuron.2015.09.020
Fabius, J. H., Mathôt, S., Schut, M. J., Nijboer, T. C. W., & der Stigchel, S. V. (2017). Focus of spatial attention during spatial working memory maintenance: Evidence from pupillary light response. Visual Cognition, 25(1-3), 10-20. https://doi.org/10.1080/13506285.2017.1311975
Fallon, S. T., Dolfen, N., Parolo, F., Zokei, N., & Husain, M. (2019). Task–irrelevant financial losses inhibit the removal of information from working memory. Scientific Reports, 9, 1673. https://doi.org/10.1038/s41598-018-36826-x
Fallon, S. T., Mattiesing, R. M., Dolfen, N., Manohar, S. G., & Husain, M. (2018). Ignoring versus updating in working memory reveal differential roles of attention and feature binding. Cortex, 107, 50-63. https://doi.org/10.1016/j.cortex.2017.12.016
Fastame, M. C. (2020). Visual and spatial working memory skills implicated in copying and drawing from memory of The Rey-Osterrieth Complex Figure. What relationship in the school-aged children? Cognitive Development, 53, 100826. https://doi.org/10.1016/j.cogdev.2019.100826
Finkelmeyer, A., Kellerman, T., Bude, D., Nießen, T., Schwenzer, M., Mathiak, K., & Reske, M. (2010). Effects of aversive odour presentation on inhibitory control in the stroop colour–word interference task. BMC Neuroscience, 11, 131. https://doi.org/10.1186/1471-2202-11-131
Gaspelin, N., & Luck, S. J. (2018). The role of inhibition in avoiding distraction by salient stimuli. Trends in Cognitive Sciences, 22(1), 79–92. https://doi.org/10.1016/j.tics.2017.11.001
Geng, H., Song, Q., Li, Y., & Zhu, Y. (2005). The effect of attention to distractor on inhibitory process in selective attention. Chinese Science Bulletin, 50(16), 1743-1750. https://doi.org/10.1360/982005-516
Greiff, S., Wüstenberg, S., Goetz, T., Vainikainen, M. P., Hautamäki, J., & Bornstein, M. H. (2015). A longitudinal study of higher-order thinking skills: working memory and fluid reasoning in childhood enhance complex problem solving in adolescence. Frontiers in Psychology, 6, 1060. https://doi.org/10.3389/fpsyg.2015.01060
He, N., Rolls, E. T., Zhao, W., & Guo, S. (2019). Predicting human inhibitory control from brain structural fMRI. Brain Imaging and Behavior, 14(6), 2148-2158. https://doi.org/10.1007/s11682-019-00166-9
Heathcote, A., Coleman, J. R., Eidels, A., Watson, J. M., Houpt, J., & Strayer, D. L. (2015). Working memory’s workload capacity. Memory & Cognition, 43, 973-989. https://doi.org/10.3758/s13421-015-0526-2
Howard, C. J., Pole, R., Montgomery, P., Woodward, A., Guest, D., Standen, B.,….& Crowe, E. M. (2020). Visual spatial attention and spatial working memory do not draw on shared capacity-limited core processes. Quarterly Journal of Experimental Psychology, 73(5), 799-818. https://doi.org/10.1177/1747021819897882
Huang, J., Kahana, M. J., & Sekuler, R. (2009). A task-irrelevant stimulus attribute affects perception and short-term memory. Memory & Cognition, 37(8), 1088–1102. https://doi.org/10.3758/MC.37.8.1088
Ivancovsky, T., Kleinmintz, O., Lee, J., Kurman, J., & Shamay-Tsoory, S. G. (2018). The neural underpinings of cross-cultural differences in creativity. Human Brain Mapping, 39(11), 4493-4508. https://doi.org/10.1002/hbm.24288
Jacqui, A. M., Miriam, H. B., Judith, A. C., & Peter, J. A. (2014). Age-related differences in inhibitory control in the early school years. Child Neuropsychology, 20(5), 509-526. https://doi.org/10.1080/09297049.2013.822060
Jaeger, A. (2013). Inhibitory control and the adolescent brain: A review of fMRI research. Psychology & Neuroscience, 6(1), 23-30. http://dx.doi.org/10.3922/j.psns.2013.1.05
Janowich, J., Mishra, J., & Gazzaley, A. (2015). A cognitive paradigm to investigate interference in working memory by distractions and interruptions. Journal of Visualized Experiments, 101, e52226. https://doi.org/10.3791/52226
Karlsson, J., Jolles, D., Koornneef, A., van den Broek, P., & Leijenhorst, L.V. (2019). Individual differences in children’s comprehension of temporal relation: Dissociable contributions of working memory capacity and working memory updating. Journal of Experimental Child Psychology, 185, 1-18. https://doi.org/10.1016/j.jecp.2019.04.007
Keijzer M. (2013). Working memory capacity, inhibitory control and the role of L2 proficiency in aging L1 Dutch speakers of near-native L2 English. Brain Sciences, 3(3), 1261–1281. https://doi.org/10.3390/brainsci3031261
Kesler, S. R., Sheau, K., Koovakkattu, D., & Reiss, A. L. (2011). Changes in frontal-parietal activation and math skills performance following adaptive number sense training: preliminary results from a pilot study. Neuropsychological Rehabilitation, 21(4), 433–454. https://doi.org/10.1080/09602011.2011.578446
Koizumi, A., Lau, H., Shimada, Y., & Kondu, H.M. (2018). The effect neurochemical balance in the anterior cingulate cortex and dorsolateral prefrontal cortex on volitional control under irrelevant distraction. Consciousness and Cognition, 59, 104-111. https://doi.org/10.1016/j.concog.2018.01.001
Künstler, E., Finke, K., Günther, A., Klingner, C., Witte, O., & Bublak, P. (2018). Motor-cognitive dual-task performance: Effects of a concurrent motor task on distinct components of visual processing capacity. Psychological Research, 82(1), 177–185. https://doi.org/10.1007/s00426-017-0951-x
Laing, P. A. F., Burns, N., & Baetu, I. (2019). Individual differences in anxiety and fear learning: The role of working memory capacity. Acta Psychologia, 193, 42-54. https://doi.org/10.1016/j.actpsy.2018.12.006
Leontyev, A., Sun, S., Wolfe, M., & Yamauchi, T. (2018). Augmented go/no-go task: Mouse cursor motion measures improve ADHD symptom assessment in healthy college students. Frontiers in Psychology. 9, 496. https://doi.org/10.3389/fpsyg.2018.00496
Lilienthal, L., Rose, N. S., Tamez, E., Myerson, J., & Hale, S. (2015). Individuals with low working memory spans show greater interference from irrelevant information because of poor source monitoring, not greater activation. Memory & Cognition, 43(3), 357–366. https://doi.org/10.3758/s13421-014-0465-3
Linck, J. A., & Weiss, D. J. (2015). Can working memory and inhibitory control predict second language learning in the classroom? SAGE Open, 5(4), 1-11. https://doi.org/10.1177/2158244015607352
Little, D. R., Lewandowsky, S., & Craigg, S. (2014). Working memory capacity and fluid abilities: The more difficult the item, the more is better. Frontiers in Psychology, 5, 239. https://doi.org/10.3389/fpsyg.2014.00239
Lockwond, P. L., & Wittmann, M. K. (2018). Ventral anterior cingulate cortex and social decision-making. Neuroscience & Biobehavioral Reviews, 92, 187-191. https://doi.org/10.1016/j.neubiorev.2018.05.030
Luck, S. T., & Vogel, E. K. (2013). Visual working memory capacity: from psychophysics and neurobiology to individual differences. Trends in Cognitive Science, 17(8), 391-400. https://doi.org/10.1016/j.tics.2013.06.006
Luijten, M., Littel, M., & Franken, I. H. A. (2011). Deficits in inhibitory control in smokers during a go/nogo task: An investigation using event-related brain potentials. PLoS ONE, 6(4), e18898. https://dx.doi.org/10.1371/journal.pone.0018898
Lustig, C., Hasher, L., & Tonev, S. T. (2001). Inhibitory control over the present and the past. European Journal of Cognitive Psychology, 13(1-2), 107-122. https://doi.org/10.1080/09541440126215
Lv, K. (2015). The involvement of working memory and inhibition functions in the different phases of insight problem solving. Memory & Cognition, 43, 709-722. https://doi.org/10.3758/s13421-014-0498-7
Macdonald, J. A., Beauchamp, M. H., Crigan, J. A., & Anderson, P. J. (2014). Age–related differences in inhibitory control in the early school years. Child Neuropsychology, 20(5), 509-526. https://doi.org/10.1080/09297049.2013.822060
Manza, P., Hau, C, L, H., & Leung, H-C. (2014). Alpha power gates relevant information during working memory updating. Journal of Neuroscience, 34(17), 5998-6002. https://doi.org/10.1523/JNEUROSCI.4641-13.2014
Maraver, M. J., Bajo, M. T., & Gomez-Ariza, C. J., (2016). Training on working memory and inhibitory control in young adults. Frontiers in Human Neuroscience, 10, 588. https://doi.org/10.3389/fnhum.2016.00588
Martyr, A., Boycheva, E., & Kudlicka, A. (2019). Assessing inhibitory control in early-stage Alzheimer’s and Parkinson’s disease using the Hayling Sentence Completion Test. Journal of Neuropsychology, 13(1), 67–81. https://doi.org/10.1111/jnp.12129
McRae, K., Hughes, B., Chopra, S., Gabrieli, J. D., Gross, J. J., & Ochsner, K. N. (2010). The neural bases of distraction and reappraisal. Journal of Cognitive Neuroscience, 22(2), 248–262. https://doi.org/10.1162/jocn.2009.21243
Medina, L. D., Sadler, M., Yeh, M., Filoteo, J. V., Woods, S. P., & Gilbert, P. E. (2019). Collectivism is associated with greater neurocognitive fluency in older adults. Frontiers in Human Neuroscience, 13, 122. https://doi.org/10.3389/fnhum.2019.00122
Mertes, C., Wascher, E., & Schneider, D. (2016). From capture to Inhibition: How does irrelevant information influence visual search? Evidence from a spatial cuing paradigm. Frontiers in Human Neuroscience, 10, 232. https://dx.doi.org/10.3389/fnhum.2016.00232
Meyer, H. C., & Bucci, D. J. (2016). Neural and behavioral mechanisms of proactive and reactive inhibition. Learning Memory, 23(10), 504-514. https://doi.org/10.1101/lm.040501.115
Michal, A. L., Lleras, A., & Beck, D. M. (2014). Relative contributions of task–relevant and task–irrelevant dimensions in priming of pop–out. Journal of Vision, 14(12), 14. https://doi.org/10.1167/14.12.14
Milham, M. P., Erickson, K. I., Banich, M. T., Kramer, A. F., Webb, A., Wszalea, T., & Cohen, N. T. (2002). Attentional control in the aging brain: Insight from an fMRI study of the stroop task. Brain and Cognition, 49(3), 277-296. https://doi.org/10.1006/brcg.2001.1501
Miyake, A., & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions: Four general conclusions. Current Directions in Psychological Science, 21(1), 8-14. https://doi.org/10.1177/0963721411429458
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., & Howerter, A. (2000). The unity and diversity of executive function and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49-100. https://doi.org/10.1006/cogp.1999.0734
Moehring, A., Schroeders, U., & Wilhelm, O. (2018). Knowledge is power for medical assistants: Crystallized and fluid intelligence as predictors of vocational knowledge. Frontiers in Psychology, 9, 28. https://doi.org/10.3389/fpsyg.2018.00028
van Moorselar, D., & Slagter, H. A. (2019). Learning what is irrelevant or relevant: Expectations facilitate distractor inhibition and target facilitation through distinct neural mechanisms. Journal of Neuroscience, 39(35), 6953-6967. https://doi.org/10.1523/JNEUROSCI.0593-19.2019
Na, D. G., Ryu, J. W., Byun, H. S., Choi, D. S., Lee, E. J., Chung, W. I., … Han, B. K. (2000). Functional MR imaging of working memory in the human brain. Korean Journal of Radiology, 1(1), 19–24. https://doi.org/10.3348/kjr.2000.1.1.19
Nakagawa, S., Takeuchi, H., Taki, Y., Nouchi, R., Kotozaki, Y., Shinada, T., ….., & Kawashima, R. (2019). Mean diffusity related collectivism among university students in Japan. Scientific Reports, 9, 1338. https://doi.org/10.1038/s41598-018-37995-5
Nasr, S., Moeeny, A., & Esteky, H. (2008). Neural correlate of filtering of irrelevant information from visual working memory. PLoS One, 3(9), e3282. https://doi.org/10.1371/journal.pone.0003282
Neill, W. T., Valdes, L. A., & Terry, K. M. (1995). Selective attention and the inhibitory control of cognition. Dalam F. N. Dempster & C. J. Brainerd (Eds.), Interference and Inhibition in Cognition (hal. 207-261). Academic Press.
Noreen, S., & MacLeod, M. D. (2015). What do we really know about cognitive inhibition? Task demands and inhibitory effects across a range of memory and behavioural tasks. PloS One, 10(8), e0134951. https://doi.org/10.1371/journal.pone.0134951
Oberauer, K. (2019). Working memory and attention – A conceptual analysis and review. Journal of Cognition, 2(1), 36. http://doi.org/10.5334/joc.58
Oswald, J. P., Trembly, S., & Jones, D. M. (2000). Disruption of comprehension by the meaning of irrelevant sound. Memory, 8(5), 345-350. https://doi.org/10.1080/09658210050117762
Pearson, J. M., Heilbronner, S. R., Barack, D. L., Hayden, B. Y., & Platt, M. L. (2011). Posterior cingulate cortex: Adapting behavior to a changing world. Trends in Cognitive Sciences, 15(4), 143–151. https://dx.doi.org/10.1016/j.tics.2011.02.002
Pennequin, V., Sorel, O., & Mainguy, M. (2010). Metacognition, executive functions and aging. The effect of training in the use of metacognitive skills to solve mathematical word problems. Journal of Adult Development, 17, 168-176. https://doi.org/10.1007/s10804-010-9098-3
Pimperton, H., & Nation, K. (2010). Suppressing irrelevant information from working memory: Evidence for domain-specific deficits in poor comprehenders. Journal of Memory and Language, 62(4), 380-391. https://doi.org/10.1016/j.jml.2010.02.005
Piotrowski, K. T., Orzechowski, J., & Stettner, Z. (2019). The nature of inhibition in working memory search task. Journal of Cognitive Psychology, 31(3), 285-302. https://doi.org/10.1080/20445911.2019.1591421
Pisoni, D. B., & Cleary, M. (2003). Measures of working memory span and verbal rehearsal speed in deaf children after cochlear implantation. Ear and Hearing, 24(1 Suppl), 106S–20S. https://doi.org/10.1097/01.aud.0000051692.05140.8e
Plancher, G., Gyselinck, V., & Piolino, P. (2018). The integration of realistic episodic memories relies on different working memory processing: Evidence from virtual navigation. Frontiers in Psychology, 9, 47. https://dx.doi.org/10.3389/fpsyg.2018.00047
Poirel N, Borst G, Simon G, Rossi S, Cassotti M, Pineau A, …., Houdé, O. (2012). Number conservation is related to children’s prefrontal inhibitory control: An fMRI study of a Piagetian task. PLoS One, 7(7): e40802. https://doi.org/10.1371/journal.pone.0040802
Polk, T. A., Drake, R. M., Jonides, J. J., Smith, M. R., & Smith, E. E. (2008). Attention enhances the neural processing of relevant features and suppresses the processing of irrelevant features in humans: A functional magnetic resonance imaging study of the Stroop task. Journal of Neuroscience, 28(51), 13786–13792. https://dx.doi.org/10.1523/JNEUROSCI.1026-08.2008
Pornpattananangkul, N., Hariri, A. R., Harada, T., Mano, Y., Komeda, H., Parrish, T. B., ….& Chiao, J. Y. (2016). Cultural influences on neural basis of inhibitory control. Neuroimage, 139, 114-126. https://doi.org/10.1016/j.neuroimage.2016.05.061
Pretto, M. P., Hartmann, L., Garcia – Burgos, D., Sallard, E., & Spierer, L. (2019). Stimulus reward value interacts with training-induced plasticity in inhibitory control. Neuroscience, 421, 82-94. https://doi.org/10.1016/j.neuroscience.2019.10.010
Preuss, H., Leister, L., Pinnow, M., & Legenbauer, T. (2019). Inhibitory control pathway to disinhibited eating: A matter of perspective. Appetite, 141, 104297. https://doi.org/10.1016/j.appet.2019.05.028
Roets, A., Hiel, A. V., Cornelis, I., & Soetans, B. (2008). Determinants of task performance and invested effort: A need for closure by relative cognitive capacity interaction analysis. Personality and Social Psychology Bulletin, 34(6), 779-792. https://doi.org/10.1177/0146167208315554
Rolls, E. T. (2019). The cingulate cortex and limbic system for emotion, action and memory. Brain, Structure and Function, 224(9), 3001-3018. https://doi.org/10.1007/s00429-019-01945-2
Rop, G., van Wermeskerken, M., de Nooijer, J.A., Verkoeijen, P. P. J. L., & van Goget, T. (2018). Task experience as a boundary condition for the negative effects of irrelevant Information on learning. Journal Educational Review, 30, 229-253. https://doi.org/10.1007/s10648-016-9388-9
Roos, L. E., Knight, E. L., Beauchamp, K. G., Berkman, E. T., Faraday, K., Hyslop, K., & Fisher, P. A. (2017). Acute stress impairs inhibitory control based on individual differences in parasympathetic nervous system activity. Biological Psychology, 125, 58–63. https://doi.org/10.1016/j.biopsycho.2017.03.004
Rudner, M., & Rönnberg, J. (2008). The role of episodic buffer in working memory for language processing. Cognitive Processing, 9(1), 19-28. https://doi.org/10.1007/s10339-007-0183-x
Sasaki, T. (2009). The role of the central executive in associative learning. Psychologia, 52, 80-90.
Schilling, C., Kühn, S., Paus, T., Romanowski, A., Banaschewski, T., Barbot, A., …., & the IMAGEN consortium (2013). Cortical thickness of superior frontal cortex predicts impulsiveness and perceptual reasoning in adolescence. Molecular Psychiatry, 18(5), 624-630. https://doi.org/10.1038/mp.2012.56
Schurgin, M. W., Cunningham, C.A., Egeth, H. E., & Brady,T. F. (2018). Visual long-term memory can replace active maintenance in visual working memory. bioRxiv, 38184. https://doi.org/10.1101/381848
Shah, P., & Miyake, A. (1999). Models of working memory: An introduction. Dalam P. Shah, & A. Miyake, (Eds). Models of Working Memory (hal.1-27). Cambridge University Press.
Shing, Y. L., Lindenberger, U., Diamond, A., Li, S. C., & Davidson, M. C. (2010). Memory maintenance and inhibitory control differentiate from early childhood to adolescence. Developmental Neuropsychology, 35(6), 679–697. https://dx.doi.org/10.1080/87565641.2010.508546
Siebert, P. S., & Ellis, H. C. (1991). Irrelevant thoughts, emotional mood styles, and cognitive task performance. Memory & Cognition, 19, 507-513. https://doi.org/10.3758/BF03199574
Simon, S. S., Tusch, E. S., Holcomb, P. J., & Daffner, K. R. (2016). Increasing working memory load reduces processing of cross-modal task-irrelevant stimuli even after controlling for task difficulty and executive capacity. Frontiers in Human Neuroscience, 10, 380. https://doi.org/10.3389/fnhum.2016.00380
Singh, K. A., Gignac, G. E., Brydges, C. R., & Ecker, U.K.H. (2018). Working memory capacity mediates the relationship between removal and fluid intelligence. Journal of Memory and Language, 101, 18-36. https://doi.org/10.1016/j.jml.2018.03.002
Starr, D. A. (2011). Prefrontal-hippocampal pathways underlying inhibitory control over memory. Physiology & Behavior, 17(1), 139-148. https://doi.org/10.1016/j.nlm.2015.11.008
Strobel, B., Lindner, M.A., Saß, S., & Köller, O. (2018). Task-irrelevant data impair processing of graph reading tasks: An eye tracking study. Learning and Instruction, 55, 139-147. https://doi.org/10.1016/j.learninstruc.2017.10.003Swanson, H. L. (2016). Word problem solving, working memory and serious math difficulties: Do cognitive strategies really make a difference? Journal of Applied Research in Memory and Cognition, 5(4), 368–383. https://doi.org/10.1016/j.jarmac.2016.04.012Swanson, H.L. (2015). Cognitive strategy interventions improve word problem solving and working memory in children with math disabilities. Frontiers in Psychology, 6, 109. https://dx.doi.org/10.3389/fpsyg.2015.01099Swanson, H. L., Lussier, C. M., & Orosco, M. J. (2013). Cognitive strategies, working memory, and growth in word problem solving in children with math difficulties. Journal of Learning Disabilities, 48(4), 339-358. https://doi.org/10.1177/0022219413498771Swanson, H. L., Moran., A. S., Bocian., K., Lussier, C., & Zheng, X. (2012). Generative strategies, working memory and word problem solving accuracy in children at risk for math disabilities. Learning Disabilities Quarterly, 36(4), 202-214. https://doi.org/10.1177/0731948712464034
Tiego, J., Testa, R., Bellgrove, M. A., Pantelis, C., & Whittle, S. (2018). A hierarchical model of inhibitory control. Frontiers in Psychology, 9, 1339. https://doi.org/10.3389/fpsyg.2018.01339
Toepper, M., Gebhardt, H., Bebio, T., Thomas, C., Driessen, M., Bischoff, M.,….& Sammer, G. (2010). Functional correlates of distractor suppression during spatial working memory encoding. Neuroscience, 165(4), 1244-1253. https://doi.org/10.1016/j.neuroscience.2009.11.019
Triplett, R. L., Velannova, K., Luna, B., Padmanathan, A., Gaillard, M. D., & Asato, M. R. (2014). Investigating inhibitory control in children with epilepsy: An fMRI study. Epilepsia, 55(10), 1667-1676. https://doi.org/10.1111/epi.12768
Vara, A. S., Pang, E. W., Vidal, J., Anagnostou, E., & Taylor, M. J. (2014). Neural mechanisms of inhibitory control continue to mature in adolescence. Developmental Cognitive Neuroscience, 10, 129–139. https://doi.org/10.1016/j.dcn.2014.08.009
Valle,T. M., Gómez-Ariza, C. J., & Bajo, M.T. (2019). Inhibitory control during selective retrieval may hinder subsequent analogical thinking. PLoS One, 14(2), e0211881. https://doi.org/10.1371/journal.pone.0211881
Veer, I. M., Luyten, H., Mulder, H., van Tuijl, C., & Sleegers, P. J. C. (2017). Selective attention relates to the development of executive functions in 2.5- to 3-year-olds: A longitudinal study. Early Childhood Research Quarterly, 41, 84–94. https://doi.org/10.1016/j.ecresq.2017.06.005
Vellage, A. K., Becke, A., Strumpf, H., Baier, B., Schönfeld, M. A., Hopf, J. M., & Müller, N. G. (2016). Filtering and storage working memory networks in younger and older age. Brain and Behavior, 6(11), e00544. https://dx.doi.org/10.1002/brb3.544
Wais, P. E., & Gazzaley, A. (2011). The impact of auditory distraction on retrieval of visual memories. Psychonomic Bulletin & Review, 18(6), 1090-1097. https://doi.org/10.3758/s13423-011-0169-7
Waters, G., & Caplan, D. (2003). The reliability and stability of verbal working memory measures. Behavior Research Methods, Instruments & Computer, 35(4), 550-564. https://doi.org/10.3758/BF03195534
Wei, P., Yu, H., Müller, H. J., Pollman, S., & Zhou, X. (2018). Differential brain mechanism for processing distracting information in task – relevant and irrelevant dimensions in visual search. Human Brain Mapping, 40(1), 110-124. https://doi.org/10.1002/hbm.24358
West, R., & Alain, C. (2000). Age‐related decline in inhibitory control contributes to the increased Stroop effect observed in older adults. Psychophysiology, 37(2), 179-189. https://doi.org/10.1111/1469-8986.3720179Wilcockson, T. D. W., Mardanbegi, D., Sawyer, P., Gellersen, H., Xia, B., & Crawford, T. J. (2019). Oculomotor and inhibitory control in dyslexia. Frontiers in Systems Neuroscience, 12, 66. https://doi.org/10.3389/fnsys.2018.00066
Wilhelm, O., Hildebrandt, A., & Oberauer, K. (2013). What is working memory capacity, and how can we measure it? Frontiers in Psychology, 4, 433. https://doi.org/10.3389/fpsyg.2013.00433
Woumans, E., Ameloot, S., Keuleers, E., & Van Assche, E. (2019). The relationship between second language acquisition and nonverbal cognitive abilities. Journal of Experimental Psychology: General, 148(7), 1169–1177. https://doi.org/10.1037/xge0000536
Xu, K. S., Mayse, J. D., & Courtney, M. S. (2019). Evidence for selective adjustments of inhibitory control in variant of the stop signal task. Quarterly Journal of Experimental Psychology, 72(4), 818-831. https://doi.org/10.1177/1747021818768721
Yamagato, S., Yamaguchi, S., & Kobayashi, S. (2004). Impaired novelty processing in apathy after subcortical stroke. Stroke, 35(8), 1935-1940. https://doi.org/10.1161/01.str.0000135017.51144.c9
Yang, Z., & Tang, A. C. (2011). Novelty-induced enhancement in spatial memory: Is infancy critical period?. Behavioral Brain Research, 219(1), 47-54. https://doi.org/10.1016/j.bbr.2010.12.020
Yin, J., Zhou, J., Xu, H., Liang, J., Gao, Z., & Shen, M. (2012). Does high memory load kick task-irrelevant information out of visual working memory? Psychonomic Buletin & Review, 19, 218-224. https://doi.org/10.3758/s13423-011-0201-y
Zanto, T. P., & Gazzaley, A. (2009). Neural suppression of irrelevant information underlies optimal working memory performance. Journal of Neuroscience, 29(10), 3059-3066. https://doi.org/10.1523/JNEUROSCI.4621-08.2009
Zeinti, M., & Kliegel, M. (2007). The role of inhibitory control in age – related operation span performance. European Journal of Ageing, 4(4), 213-217. https://dx.doi.org/10.1007/s10433-007-0066-0
Zelazo, P. D., & Lee, W. S. C. (2010). Brain development: An overview. Dalam R. M. Lerner & W. F. Overton (Eds.), The Handbook of Life-span development, volume 1: Cognition, biology, and methods, (hal.89-114). Wiley.
Zhang, L., Yu, S., Li, B., & Wang, J. (2017). Can students identity the relevant information to solve the problem?. Journal of Educational Technology & Society, 20(4), 288-299.
Zhao, X., Chen, L., & Maos, J. H. R. (2016). Training and transfer effect of response inhibition training in children and adults. Development Science, 21(1), e12511. https://doi.org/10.1111/desc.12511
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Buletin Psikologi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.