Dasar - Dasar Electroencephalography (EEG) bagi Riset Psikologi

Zulfikri Khakim, Sri Kusrohmaniah
(Submitted 9 December 2019)
(Published 28 June 2021)

Abstract


Electroencephalography (EEG) merupakan metode untuk merekam aktivitas elektris otak pada permukaan kulit kepala. EEG merekam fluktuasi potensial elektris yang muncul sebagai akibat dari aktivitas sel-sel otak. Seiring dengan kemajuan penelitian dan semakin canggih alat ukur, EEG semakin banyak digunakan dalam penelitian mengenai fungsi kognitif. Artikel ini bertujuan untuk menjelaskan pengantar teoretis mengenai alat EEG serta proses dalam analisis data untuk konteks penelitian dan eksperimen dalam kajian ilmu psikologi maupun ilmu sosial secara umum. Bagian awal mendeskripsikan mengenai dasar neural dan asumsi pengukuran dalam EEG, yang diikuti dengan penjelasan mengenai komponen-komponen alat EEG dan standar pemasangan. Bagian kedua menjelaskan mengenai pemrosesan sinyal yang memberikan contoh berbagai artefak yang merusak kualitas data EEG, serta beberapa metode dalam melakukan koreksi artefak yang umum digunakan. Ekstraksi fitur menjelaskan beberapa contoh metode dalam mengolah data EEG untuk kemudian fitur tersebut diasosiasikan dengan perilaku, proses mental atau aktivitas otak.

Keywords


electroencephalography; eksperimen; psikologi

Full Text: PDF

DOI: 10.22146/buletinpsikologi.52328

References


Amodio, D. M., Jost, J. T., Master, S. L., & Yee, C. M. (2007). Neurocognitive correlates of liberalism and conservatism. Nature Neuroscience, 10(10), 1246–1247. https://doi.org/10.1038/nn1979

Azevedo, F. A. C., Carvalho, L. R. B., Grinberg, L. T., Farfel, J. M., Ferretti, R. E. L., Leite, R. E. P., … Herculano-Houzel, S. (2009). Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. The Journal of Comparative Neurology, 513(5), 532–541. https://doi.org/10.1002/cne.21974

Bandara, D. S. V., Arata, J., & Kiguchi, K. (2018). Towards control of a transhumeral prosthesis with EEG signals. Bioengineering, 5(2), 26. https://doi.org/10.3390/bioengineering5020026

Bauer, R. M., & Dunn, C. B. (2013). Research methods in neuropsychology. Dalam I. B. Weiner, J. A. Schinka, & W. F. Velicer, Handbook of psychology: Research methods in psychology (Volume II, Edisi kedua), (hal. 274–315). John Wiley & Sons Inc.

Binnie, C. D., & Prior, P. F. (1994). Electroencephalography. Journal of Neurology, Neurosurgery & Psychiatry, 57(11), 1308–1319. https://doi.org/10.1136/jnnp.57.11.1308

Borck, C., & Hentschel, A. (2018). Brainwaves: A cultural history of electroencephalography. Routledge/Taylor & Francis Group.

Boshra, R., Ruiter, K. I., DeMatteo, C., Reilly, J. P., & Connolly, J. F. (2019). Neurophysiological correlates of concussion: Deep learning for clinical assessment. Scientific Reports, 9(1), 17341. https://doi.org/10.1038/s41598-019-53751-9

Bötzel, K., Schulze, S., & Stodieck, StefanR. G. (1995). Scalp topography and analysis of intracranial sources of face-evoked potentials. Experimental Brain Research, 104(1), 135-143. https://doi.org/10.1007/BF00229863

Coan, J. A., & Allen, J. J. B. (2004). Frontal EEG asymmetry as a moderator and mediator of emotion. Biological Psychology, 67(1–2), 7–50. https://doi.org/10.1016/j.biopsycho.2004.03.002

Cohen, M. X., & Ridderinkhof, K. R. (2013). EEG source reconstruction reveals frontal-parietal dynamics of spatial conflict processing. PLoS One, 8(2), e57293. https://doi.org/10.1371/journal.pone.0057293

Craik, A., He, Y., & Contreras-Vidal, J. L. (2019). Deep learning for electroencephalogram (EEG) classification tasks: A review. Journal of Neural Engineering, 16(3), 031001. https://doi.org/10.1088/1741-2552/ab0ab5

Davidson, R. J. (1998a). Affective style and affective disorders: perspectives from affective neuroscience. Cognition & Emotion, 12(3), 307–330. https://doi.org/10.1080/026999398379628

Davidson, R. J. (1998b). Anterior electrophysiological asymmetries, emotion, and depression: Conceptual and methodological conundrums. Psychophysiology, 35(5), 607–614. https://doi.org/10.1017/S0048577298000134

Davidson, R. J. (2004). What does the prefrontal cortex “do” in affect: Perspectives on frontal EEG asymmetry research. Biological Psychology, 67(1–2), 219–234. https://doi.org/10.1016/j.biopsycho.2004.03.008

Di Russo, F. (2003). Source analysis of event-related cortical activity during visuo-spatial attention. Cerebral Cortex, 13(5), 486–499. https://doi.org/10.1093/cercor/13.5.486

Dickter, C., & Kieffaber, P. (2014). EEG Methods for the Psychological Sciences. SAGE Publications Ltd. https://doi.org/10.4135/9781446270356

Duzel, E., Yonelinas, A. P., Mangun, G. R., Heinze, H.-J., & Tulving, E. (1997). Event-related brain potential correlates of two states of conscious awareness in memory. Proceedings of the National Academy of Sciences, 94(11), 5973–5978. https://doi.org/10.1073/pnas.94.11.5973

Eimer, M. (2011). The face-sensitivity of the N170 component. Frontiers in Human Neuroscience, 5, 119. https://doi.org/10.3389/fnhum.2011.00119

Farwell, L. A., & Donchin, E. (1988). Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials. Electroencephalography and Clinical Neurophysiology, 70(6), 510–523. https://doi.org/10.1016/0013-4694(88)90149-6

Fraga González, G., Smit, D. J. A., van der Molen, M. J. W., Tijms, J., Stam, C. J., de Geus, E. J. C., & van der Molen, M. W. (2018). EEG resting state functional connectivity in adult dyslexics using phase lag index and graph analysis. Frontiers in Human Neuroscience, 12, 341. https://doi.org/10.3389/fnhum.2018.00341

Garrido, M. I., Kilner, J. M., Stephan, K. E., & Friston, K. J. (2009). The mismatch negativity: A review of underlying mechanisms. Clinical Neurophysiology, 120(3), 453–463. https://doi.org/10.1016/j.clinph.2008.11.029

Gazzaniga, M. S., Ivry, R. B., & Mangun, G. R. (2009). Cognitive neuroscience: The biology of the mind (Edisi ketiga). W.W. Norton.

Grau, C., Ginhoux, R., Riera, A., Nguyen, T. L., Chauvat, H., Berg, M., … Ruffini, G. (2014). Conscious brain-to-brain communication in humans using non-invasive technologies. PLoS One, 9(8), e105225. https://doi.org/10.1371/journal.pone.0105225

Handy, T. C. (Ed.). (2005). Event-related potentials: A methods handbook. MIT Press.

Hjorth, B. (1970). EEG analysis based on time domain properties. Electroencephalography and Clinical Neurophysiology, 29(3), 306–310. https://doi.org/10.1016/0013-4694(70)90143-4

Jiang, X., Bian, G.-B., & Tian, Z. (2019). Removal of artifacts from EEG signals: A review. Sensors, 19(5), 987. https://doi.org/10.3390/s19050987

Jung, T.-P., Makeig, S., Humphries, C., Lee, T.-W., Mckeown, M. J., Iragui, V., & Sejnowski, T. J. (2000). Removing electroencephalographic artifacts by blind source separation. Psychophysiology, 37(2), 163–178. https://doi.org/10.1111/1469-8986.3720163

Kaiser, A. K., Gnjezda, M.-T., Knasmüller, S., & Aichhorn, W. (2018). Electroencephalogram alpha asymmetry in patients with depressive disorders: Current perspectives. Neuropsychiatric Disease and Treatment, 14, 1493–1504. https://doi.org/10.2147/NDT.S137776

Kalat, J. W. (2016). Biological psychology (Edisi ketiga belas). Cengage Learning.

Kamel, N., & Malik, A. S. (Eds.) (2015). EEG/ERP analysis: Methods and applications (Edisi pertama). CRC Press.

Kang, G., Jin, S.-H., Keun Kim, D., & Kang, S. W. (2018). T59. EEG artifacts removal using machine learning algorithms and independent component analysis. Clinical Neurophysiology, 129(Supp. 1), e24. https://doi.org/10.1016/j.clinph.2018.04.060

Kappenman, E. S., & Luck, S. J. (2010). The effects of electrode impedance on data quality and statistical significance in ERP recordings. Psychophysiology, 47(5), 888-904. https://doi.org/10.1111/j.1469-8986.2010.01009.x

Kessels, R. P. C. (2019). Improving precision in neuropsychological assessment: Bridging the gap between classic paper-and-pencil tests and paradigms from cognitive neuroscience. The Clinical Neuropsychologist, 33(2), 357–368. https://doi.org/10.1080/13854046.2018.1518489

Kubo, K., Okanoya, K., & Kawai, N. (2012). Apology isn’t good enough: An apology suppresses an approach motivation but not the physiological and psychological anger. PLoS One, 7(3), e33006. https://doi.org/10.1371/journal.pone.0033006

Laszlo, S., Ruiz-Blondet, M., Khalifian, N., Chu, F., & Jin, Z. (2014). A direct comparison of active and passive amplification electrodes in the same amplifier system. Journal of Neuroscience Methods, 235, 298–307. https://doi.org/10.1016/j.jneumeth.2014.05.012

Lopez-Gordo, M., Sanchez-Morillo, D., & Valle, F. (2014). Dry EEG electrodes. Sensors, 14(7), 12847–12870. https://doi.org/10.3390/s140712847

Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., & Arnaldi, B. (2007). A review of classification algorithms for EEG-based brain–computer interfaces. Journal of Neural Engineering, 4(2), R1–R13. https://doi.org/10.1088/1741-2560/4/2/R01

Luck, S. J. (2014). An introduction to the event-related potential technique (Edisi kedua). The MIT Press.

Makeig, S., & Onton, J. (2011). ERP Features and EEG Dynamics. Dalam E. S. Kappenman & S. J. Luck, The Oxford Handbook of Event-Related Potential Components. Oxford Handbooks Online. https://doi.org/10.1093/oxfordhb/9780195374148.013.0035

Mathewson, K. E., Harrison, T. J. L., & Kizuk, S. A. D. (2017). High and dry? Comparing active dry EEG electrodes to active and passive wet electrodes: Active dry vs. active & passive wet EEG electrodes. Psychophysiology, 54(1), 74–82. https://doi.org/10.1111/psyp.12536

Meyer-Baese, A., & Schmid, V. (2014). Feature selection and extraction. Dalam A. Meyer-Baese & V. Schmid (Eds.), Pattern Recognition and Signal Analysis in Medical Imaging (hal. 21–69). Academic Press. https://doi.org/10.1016/B978-0-12-409545-8.00002-9

Naro, A., Calabrò, R. S., La Rosa, G., Andronaco, V. A., Billeri, L., Lauria, P., … Bramanti, P. (2019). Toward understanding the neurophysiological basis of peripersonal space: An EEG study on healthy individuals. PLoS One, 14(6), e0218675. https://doi.org/10.1371/journal.pone.0218675

Nunez, P. L., & Srinivasan, R. (2006). Electric fields of the brain: The neurophysics of EEG (Edisi kedua). Oxford University Press.

Park, S. M., Lee, J. Y., Kim, Y. J., Lee, J.-Y., Jung, H. Y., Sohn, B. K., … Choi, J.-S. (2017). Neural connectivity in Internet gaming disorder and alcohol use disorder: A resting-state EEG coherence study. Scientific Reports, 7(1), 1333. https://doi.org/10.1038/s41598-017-01419-7

Pinel, J. P. J. (2014). Biopsychology (Edisi kesembilan). Pearson.

Polich, J., & Margala, C. (1997). P300 and probability: Comparison of oddball and single-stimulus paradigms. International Journal of Psychophysiology, 25(2), 169–176. https://doi.org/10.1016/S0167-8760(96)00742-8

Quaedflieg, C. W. E. M., Smulders, F. T. Y., Meyer, T., Peeters, F., Merckelbach, H., & Smeets, T. (2016). The validity of individual frontal alpha asymmetry EEG neurofeedback. Social Cognitive and Affective Neuroscience, 11(1), 33–43. https://doi.org/10.1093/scan/nsv090

Ratti, E., Waninger, S., Berka, C., Ruffini, G., & Verma, A. (2017). Comparison of medical and consumer wireless EEG systems for use in clinical trials. Frontiers in Human Neuroscience, 11, 398. https://doi.org/10.3389/fnhum.2017.00398

Senior, C., Russell, T., & Gazzaniga, M. S. (Eds.). (2006). Methods in mind. MIT Press.

Sinha, S. R., Sullivan, L. R., Sabau, D., Orta, D. S. J., Dombrowski, K. E., Halford, J. J., … Stecker, M. M. (2016). American clinical neurophysiology society guideline 1: Minimum technical requirements for performing clinical electroencephalography. The Neurodiagnostic Journal, 56(4), 235–244. https://doi.org/10.1080/21646821.2016.1245527

Spielberg, J. M., Stewart, J. L., Levin, R. L., Miller, G. A., & Heller, W. (2008). Prefrontal cortex, emotion, and approach/withdrawal motivation. Social and Personality Psychology Compass, 2(1), 135–153. https://doi.org/10.1111/j.1751-9004.2007.00064.x

Stavropoulos, K. K.-M., & Carver, L. J. (2016). Neural correlates of attention to human-made sounds: An ERP study. PLoS One, 11(10), e0165745. https://doi.org/10.1371/journal.pone.0165745

Stephan, K. E., & Friston, K. J. (2009). Functional connectivity. Dalam L. R. Squire (Ed.), Encyclopedia of Neuroscience (hal. 391–397). Academic Press. https://doi.org/10.1016/B978-008045046-9.00308-9

Strang, G. (1994). Wavelets. American Scientist, 82(3), 250–255.

Tacikowski, P., & Nowicka, A. (2010). Allocation of attention to self-name and self-face: An ERP study. Biological Psychology, 84(2), 318–324. https://doi.org/10.1016/j.biopsycho.2010.03.009

Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067), 500–503. https://doi.org/10.1038/nature04171

Weinberg, A., & Hajcak, G. (2010). Beyond good and evil: The time-course of neural activity elicited by specific picture content. Emotion, 10(6), 767–782. https://doi.org/10.1037/a0020242

Zoëga Ramsøy, T., Michael, N., & Michael, I. (2019). A consumer neuroscience study of conscious and subconscious destination preference. Scientific Reports, 9(1), 15102. https://doi.org/10.1038/s41598-019-51567-1


Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Buletin Psikologi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.