Recent Development of Biomass Conversion using Ionic Liquid-based Processes
Megawati Zunita(1*), Risha Diah Rhamadhani(2)
(1) Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, West Java, Indonesia, 40132
(2) Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, West Java, Indonesia, 40132
(*) Corresponding Author
Abstract
The amount of biomass products generated globally increases year after year. Nature produces lignocellulose, which is largely constituted of three components in the following order: cellulose (34–50%), hemicellulose (15–35%), and lignin (5–30%). A promising conversion method known as biomass conversion employs a liquid media-based process to address the issue of an abundance of biomass as waste. Converting biomass with ionic liquid (IL) can address not only environmental issues caused by the abundance of biomass waste but also generate new energy sources or new products with economical selling value. IL can be employed as a green catalyst, solvent, or electrolyte, as well as in a number of conversion processes. In general, 1-alkyl-3-methyl-imidazolium-based cations are the most commonly used IL types for biomass conversion. The conversion conditions are relatively mild, consisting of a low temperature of around 95-220 °C, 1 atm, for 10–240 minutes. This paper review is expected to be a significant reference in the future for the development of other biomass conversion processes.
Keywords
Full Text:
PDFReferences
- Adams, P., Bridgwater, T., Lea-Langton, A., Ross, A., & Watson, I. (2018). Biomass Conversion Technologies. Report to NNFCC. In Greenhouse Gas Balances of Bioenergy Systems. Elsevier Inc. https://doi.org/10.1016/B978-0-08-101036-5.00008-2
- Agrela, F., Cabrera, M., Morales, M. M., Zamorano, M., & Alshaaer, M. (2018). Biomass fly ash and biomass bottom ash. In New Trends in Eco-efficient and Recycled Concrete (Vol. 3). https://doi.org/10.1016/B978-0-08-102480-5.00002-6
- Agrela, F., Cabrera, M., Morales, M. M., Zamorano, M., & Alshaaer, M. (2018). Biomass fly ash and biomass bottom ash. In New Trends in Eco-efficient and Recycled Concrete (Vol. 3). https://doi.org/10.1016/B978-0-08-102480-5.00002-6
- Anderson, J. L., & Armstrong, D. W. (n.d.). in Analytical Chemistry.
- Asim, A. M., Uroos, M., & Muhammad, N. (2020). Extraction of lignin and quantitative sugar release from biomass using efficient and cost-effective pyridinium protic ionic liquids. RSC Advances, 10(72), 44003–44014. https://doi.org/10.1039/d0ra09098k
- Asim, A. M., Uroos, M., & Muhammad, N. (2020). Extraction of lignin and quantitative sugar release from biomass using efficient and cost-effective pyridinium protic ionic liquids. RSC Advances, 10(72), 44003–44014. https://doi.org/10.1039/d0ra09098k
- Balat, M., Acici, N., & Ersoy, G. (2006). Trends in the use of biomass as an energy source. Energy Sources, Part B: Economics, Planning and Policy, 1(4), 367–378. https://doi.org/10.1080/15567240500400705
- Boz, N., Degirmenbasi, N., & Kalyon, D. M. (2009). Applied Catalysis B : Environmental Conversion of biomass to fuel : Transesterification of vegetable oil to biodiesel. 89, 590–596. https://doi.org/10.1016/j.apcatb.2009.01.026
- Brandt, A., Hallett, J. P., Leak, D. J., Murphy, J., & Welton, T. (2010). The effect of the ionic liquid anion in the pretreatment of pine wood chips †. 672–679. https://doi.org/10.1039/b918787a
- Brandt, A., Hallett, J. P., Leak, D. J., Murphy, R. J., & Welton, T. (n.d.). Supplementary Information The effect of the ionic liquid anion in the pretreatment of pine wood chips.
- Brandt, A., Ray, M. J., To, T. Q., Leak, D. J., Murphy, R. J., & Welton, T. (2011). Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid–water mixtures. Green Chemistry, 13(9), 2489–2499. https://doi.org/10.1039/c1gc15374a
- Bundhoo, Z. M. A. (2018). Microwave-assisted conversion of biomass and waste materials to biofuels. Renewable and Sustainable Energy Reviews, 82(September 2017), 1149–1177. https://doi.org/10.1016/j.rser.2017.09.066
- Cao, Y., Yao, S., Wang, X., & Peng, Q. (2012). T HE P HYSICAL AND C HEMICAL P ROPERTIES OF I ONIC L IQUIDS AND I TS A PPLICATION IN.
- Chemmangattuvalappil, N. G., Ng, D. K. S., Ng, L. Y., Ooi, J., Chong, J. W., & Eden, M. R. (2020). A review of process systems engineering (PSE) tools for the design of ionic liquids and integrated biorefineries. Processes, 8(12), 1–29. https://doi.org/10.3390/pr8121678
- Chinnappan, A., & Baskar, S. (2017). Conversion of Sugars Into 5-Hmf. 123–130.
- Chinnappan, A., Baskar, C., & Kim, H. (2016). Biomass into chemicals: Green chemical conversion of carbohydrates into 5-hydroxymethylfurfural in ionic liquids. RSC Advances, 6(68), 63991–64002. https://doi.org/10.1039/c6ra12021k
- Connor, R. O. (2014). ( 12 ) Patent Application Publication ( 10 ) Pub . No .: US 2014 / 0308720 A1. 1(19).
- D.M. Alonso, S.G. Wettstein, J.A. Dumesic, Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass, Green Chem. 15 (2013) 584–595.
- Dunn, P. J. (2012). The importance of green chemistry in process research and development. Chemical Society Reviews, 41(4), 1452–1461. https://doi.org/10.1039/c1cs15041c
- Financie, R., Moniruzzaman, M., & Uemura, Y. (2016). Enhanced enzymatic delignification of oil palm biomass with ionic liquid pretreatment. Biochemical Engineering Journal, 110, 1–7. https://doi.org/10.1016/j.bej.2016.02.008
- Grza, A., & Skrzypczak, A. (2019). The influence of the cation type of ionic liquid on the production of nanocrystalline cellulose and mechanical properties of chitosan-based biocomposites. 1, 4827–4840. https://doi.org/10.1007/s10570-019-02412-1
- Guragain, Y. N., Herrera, A. I., Vadlani, P. V., & Prakash, O. (2015). Lignins of bioenergy crops: A review. Natural Product Communications, 10(1), 201–208. https://doi.org/10.1177/1934578x1501000141
- Harriman, A. (2013). Prospects for conversion of solar energy into chemical fuels: The concept of a solar fuels industry. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1996). https://doi.org/10.1098/rsta.2011.0415
- Harriman, A. (2013). Prospects for conversion of solar energy into chemical fuels: The concept of a solar fuels industry. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1996). https://doi.org/10.1098/rsta.2011.0415
- Hartanto, Y., Yaswari, Y., Zunita, M., Soerawidjaja, T. H., & Indarto, A. (2017). Decolorization of crude terpineol by adsorption. Separation Science and Technology (Philadelphia), 52(12), 1967–1972. https://doi.org/10.1080/01496395.2017.1313863
- Hasanov, I., Raud, M., & Kikas, T. (2020). The role of ionic liquids in the lignin separation from lignocellulosic biomass. Energies, 13(18), 1–24. https://doi.org/10.3390/en13184864
- Hina, S., Zhu, X., Chen, Y., & Zhang, Y. (2015). Chemical Engineering Thermodynamics NU SC Graphic Abstract. CJCHE. https://doi.org/10.1016/j.cjche.2014.06.039
- Hong, F., Guo, X., Zhang, S., Han, S., Yang, G., & Jönsson, L. J. (2012). Bioresource Technology Bacterial cellulose production from cotton-based waste textiles : Enzymatic saccharification enhanced by ionic liquid pretreatment. Bioresource Technology, 104, 503–508. https://doi.org/10.1016/j.biortech.2011.11.028
- Hou, Q., Ju, M., Li, W., Liu, L., Chen, Y., Yang, Q., & Zhao, H. (2017). Pretreatment of lignocellulosic biomass with ionic liquids and ionic liquid-based solvent systems. Molecules, 22(3), 1–24. https://doi.org/10.3390/molecules22030490
- Ilpeläinen, I. L. K., Ie, H. A. X., Ing, A. L. K., Ranstrom, M. A. R. I. G., Eikkinen, S. A. M. I. H., & Rgyropoulos, D. I. S. A. (2007). Dissolution of Wood in Ionic Liquids. 9142–9148.
- Julien, P. A., Fri, T., & Julien, P. (2017). Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem., 207890, 2729–2747.
- Junnienkul, N., Sriariyanun, M., Douzou, T., Yasurin, P., & Asavasanti, S. (2018). Optimization of Alkyl Imidazolium Chloride Pretreatment on Rice Straw Biomass Conversion. KMUTNB International Journal of Applied Science and Technology, June. https://doi.org/10.14416/j.ijast.2018.06.002
- Khan, A. S., Man, Z., Bustam, M. A., Kait, C. F., Ullah, Z., Nasrullah, A., Khan, M. I., Gonfa, G., Ahmad, P., & Muhammad, N. (2016). SC. Journal of Molecular Liquids. https://doi.org/10.1016/j.molliq.2016.09.012
- Khan, A. S., Man, Z., Bustam, M. A., Nasrullah, A., Ullah, Z., Sarwono, A., Shah, F. U., & Muhammad, N. (2018). Efficient conversion of lignocellulosic biomass to levulinic acid using acidic ionic liquids. Carbohydrate Polymers, 181, 208–214. https://doi.org/10.1016/j.carbpol.2017.10.064
- Khan, A. S., Man, Z., Nasrullah, A., Ullah, Z., Muhammad, N., Rahim, A., Bustam, A., & Idris, A. (2019). Conversion of biomass to chemicals using ionic liquids. In Green Sustainable Process for Chemical and Environmental Engineering and Science: Ionic Liquids as Green Solvents. Elsevier Inc. https://doi.org/10.1016/B978-0-12-817386-2.00001-9
- Kim, K., Shin, B., & Lee, H. (2004). Physical and Electrochemical Properties of 1-Butyl-3-methylimidazolium Bromide ,. 21(5), 1010–1014.
- Krishnan, S., Quraishi, K. S., Aminuddin, N. F., Mazlan, F. A., & Leveque, J. M. (2016). Biodegradability of immidazolium, pyridinium, piperidinium and pyrrolidinium based ionic liquid in different water source. AIP Conference Proceedings, 1787. https://doi.org/10.1063/1.4968096
- KS, R., Ramya, C., & Varjani, S. (2019). Trends and advances in bioenergy production and sustainable solid waste management. Energy and Environment. https://doi.org/10.1177/0958305X19882415
- Kumar, K., Pathak, S., & Upadhyayula, S. (2020). 2nd generation biomass derived glucose conversion to 5-hydroxymethylfurfural and levulinic acid catalyzed by ionic liquid and transition metal sulfate: Elucidation of kinetics and mechanism. Journal of Cleaner Production, 256, 120292. https://doi.org/10.1016/j.jclepro.2020.120292
- Kunz, W., & Häckl, K. (2016). The hype with ionic liquids as solvents. Chemical Physics Letters, 661, 6–12. https://doi.org/10.1016/j.cplett.2016.07.044
- Labbé, N., Kline, L. M., Moens, L., Kim, K., Kim, P. C., & Hayes, D. G. (2012). Activation of lignocellulosic biomass by ionic liquid for biorefinery fractionation. Bioresource Technology, 104, 701–707. https://doi.org/10.1016/j.biortech.2011.10.062
- Labbé, N., Kline, L. M., Moens, L., Kim, K., Kim, P. C., & Hayes, D. G. (2012). Activation of lignocellulosic biomass by ionic liquid for biorefinery fractionation. Bioresource Technology, 104, 701–707. https://doi.org/10.1016/j.biortech.2011.10.062
- Lan, K., Park, S., & Yao, Y. (2019). Key issue, challenges, and status quo of models for biofuel supply chain design. In Biofuels for a More Sustainable Future: Life Cycle Sustainability Assessment and Multi-Criteria Decision Making. Elsevier Inc. https://doi.org/10.1016/B978-0-12-815581-3.00010-5
- Lan, K., Park, S., & Yao, Y. (2019). Key issue, challenges, and status quo of models for biofuel supply chain design. In Biofuels for a More Sustainable Future: Life Cycle Sustainability Assessment and Multi-Criteria Decision Making. Elsevier Inc. https://doi.org/10.1016/B978-0-12-815581-3.00010-5
- Li, C., & Zhao, Z. K. (2008). Acid in ionic liquid : An efficient system for hydrolysis of lignocellulose. 177–182. https://doi.org/10.1039/b711512a
- Li, M., Luo, N., & Lu, Y. (2017). Biomass energy technological paradigm (BETP): Trends in this sector. Sustainability (Switzerland), 9(4), 1–28. https://doi.org/10.3390/su9040567
- Liu, D. D. J., & Chen, E. Y. X. (2013). Polymeric ionic liquid (PIL)-supported recyclable catalysts for biomass conversion into HMF. Biomass and Bioenergy, 48(Il), 181–190. https://doi.org/10.1016/j.biombioe.2012.11.020
- Liu, L., Li, Z., Hou, W., & Shen, H. (2018). Direct conversion of lignocellulose to levulinic acid catalyzed by ionic liquid. Carbohydrate Polymers, 181(November 2017), 778–784. https://doi.org/10.1016/j.carbpol.2017.11.078
- Liu, Y., Wu, Y., Su, M., Liu, W., Li, X., & Liu, F. (2020). Developing Brønsted–Lewis acids bifunctionalized ionic liquids based heteropolyacid hybrid as high-efficient solid acids in esterification and biomass conversion. Journal of Industrial and Engineering Chemistry, 92, 200–209. https://doi.org/10.1016/j.jiec.2020.09.005
- Liu, Y., Wu, Y., Su, M., Liu, W., Li, X., & Liu, F. (2020). Developing Brønsted–Lewis acids bifunctionalized ionic liquids based heteropolyacid hybrid as high-efficient solid acids in esterification and biomass conversion. Journal of Industrial and Engineering Chemistry, 92, 200–209. https://doi.org/10.1016/j.jiec.2020.09.005
- Luque, R., De, S., & Balu, A. M. (2016). Catalytic conversion of biomass. Catalysts, 6(10), 10–11. https://doi.org/10.3390/catal6100148
- Lynam, J. G., Toufiq Reza, M., Vasquez, V. R., & Coronella, C. J. (2012). Pretreatment of rice hulls by ionic liquid dissolution. Bioresource Technology, 114, 629–636. https://doi.org/10.1016/j.biortech.2012.03.004
- Makertihartha, I. G. B. N., Dharmawijaya, P.T., Zunita, M., & Wenten, I.G. (2017). Post combustion CO2 capture using zeolite membrane. AIP Conference Proceedings, 1818. https://doi.org/10.1063/1.4979941
- Makertihartha, I. G. B. N., Rizki, Z., Zunita, M., & Dharmawijaya, P. T. (2017). Dyes removal from textile wastewater using graphene based nanofiltration. AIP Conference Proceedings, 1840, 110006. https://doi.org/10.1063/1.498233
- Makertihartha, I. G. B. N., Zunita, M., Rizki, Z., & Dharmawijaya, P. T. (2017). Solvent extraction of gold using ionic liquid based process. AIP Conference Proceedings, 1805. https://doi.org/10.1063/1.4974419
- Makertihartha, I. G. B. N., Zunita, M., Rizki, Z., & Dharmawijaya, P. T. (2017). Supported ionic liquid membrane in membrane reactor. AIP Conference Proceedings, 1788, 040003. https://doi.org/10.1063/1.4968391
- Mehrdadfar1, A., & , Majid Amidpour2, N. B. and A. A. S. (2016). World Bioenergy Congress and Expo. Journal of Fundamentals of Renewable Energy and Applications, 6(3), 4541.
- Mehrdadfar1, A., & , Majid Amidpour2, N. B. and A. A. S. (2016). World Bioenergy Congress and Expo. Journal of Fundamentals of Renewable Energy and Applications, 6(3), 4541.
- Mudhoo, A., Torres-Mayanga, P. C., Forster-Carneiro, T., Sivagurunathan, P., Kumar, G., Komilis, D., & Sánchez, A. (2018). A review of research trends in the enhancement of biomass-to-hydrogen conversion. Waste Management, 79, 580–594. https://doi.org/10.1016/j.wasman.2018.08.028
- Muhammad, N., Man, Z., Bustam, M. A., Mutalib, M. I. A., Wilfred, C. D., & Rafiq, S. (2011). Dissolution and Delignification of Bamboo Biomass Using Amino Acid-Based Ionic Liquid. 998–1009. https://doi.org/10.1007/s12010-011-9315-y
- N.A.S. Ramli, N.A.S. Amin, A new functionalized ionic liquid for efficient glucose conversion to 5-hydroxymethyl furfural and levulinic acid, J. Mol. Catal. A Chem. 407 (2015) 113–121.
- Naqi, A. (2018). Conversion of Biomass to Liquid Hydrocarbon Fuels via Anaerobic Digestion: A Feasibility Study. ProQuest Dissertations and Theses, March, 114.
- Nargotra, P., Sharma, V., Gupta, M., Kour, S., & Bajaj, B. K. (2018). Application of ionic liquid and alkali pretreatment for enhancing saccharification of sunflower stalk biomass for potential biofuel-ethanol production. Bioresource Technology, 267(May), 560–568. https://doi.org/10.1016/j.biortech.2018.07.070
- Naz, S., Uroos, M., Asim, A. M., Muhammad, N., & Shah, F. U. (2020). One-Pot Deconstruction and Conversion of Lignocellulose Into Reducing Sugars by Pyridinium-Based Ionic Liquid–Metal Salt System. Frontiers in Chemistry, 8(April), 1–11. https://doi.org/10.3389/fchem.2020.00236
- Naz, S., Uroos, M., Asim, A. M., Muhammad, N., & Shah, F. U. (2020). One-Pot Deconstruction and Conversion of Lignocellulose Into Reducing Sugars by Pyridinium-Based Ionic Liquid–Metal Salt System. Frontiers in Chemistry, 8(April), 1–11. https://doi.org/10.3389/fchem.2020.00236
- Naz, S., Uroos, M., Asim, A. M., Muhammad, N., & Shah, F. U. (2020). One-Pot Deconstruction and Conversion of Lignocellulose Into Reducing Sugars by Pyridinium-Based Ionic Liquid–Metal Salt System. Frontiers in Chemistry, 8(April), 1–11. https://doi.org/10.3389/fchem.2020.00236
- Ofrasio, B. I. G., de Luna, M. D. G., Chen, Y. C., Abarca, R. R. M., Dong, C. Di, & Chang, K. L. (2020). Catalytic conversion of sugars and biomass to furanic biofuel precursors by boron-doped biochar in ionic liquid. Bioresource Technology Reports, 11(July), 100515. https://doi.org/10.1016/j.biteb.2020.100515
- P. Dhurjati, Biorefineries-industrial processes and products, status quo and future directions:volumes 1 and 2 by Birgit Kamm, Patrick Gruber and Michael Kamm, AICHE J. 54 (2008) 3036.
- Perea-Moreno, M. A., Samerón-Manzano, E., & Perea-Moreno, A. J. (2019). Biomass as renewable energy: Worldwide research trends. Sustainability (Switzerland), 11(3). https://doi.org/10.3390/su11030863
- Perea-Moreno, M. A., Samerón-Manzano, E., & Perea-Moreno, A. J. (2019). Biomass as renewable energy: Worldwide research trends. Sustainability (Switzerland), 11(3). https://doi.org/10.3390/su11030863
- Puligundla P, Oh SE, Mok C. Microwave-assisted pretreatment technologies for the conversion of lignocellulosic biomass to sugars and ethanol: a review. Carbon Lett2016;17:1–10.
- R.E. Quiroz-Castan˜eda, J.L. Folch-Mallol, Hydrolysis of biomass mediated by cellulases for the production of sugars, in: Sustainable Degradation of Lignocellulosic
- Ren, X. Y., Feng, X. B., Cao, J. P., Tang, W., Wang, Z. H., Yang, Z., Zhao, J. P., Zhang, L. Y., Wang, Y. J., & Zhao, X. Y. (2020). Catalytic Conversion of Coal and Biomass Volatiles: A Review. Energy and Fuels, 34(9), 10307–10363. https://doi.org/10.1021/acs.energyfuels.0c01432
- Rogers, R. D., & Macfarlane, D. (n.d.). Ionic Liquids web themed issue. https://doi.org/10.1039/c2cc30357d
- Ruya, P.M., Lim, S.S., Purwadi, R., & Zunita, M. (2020). Sustainable hydrogen production from oil palm derived wastes through autothermal operation of supercritical water gasification system. Energy, 208, 118280. https://doi.org/10.1016/j.energy.2020.118280
- Segneanu, A.-E., Sziple, F., Vlazan, P., Sfarloaga, P., Grozesku, I., & Daniel, V. (2013). Biomass Extraction Methods. Biomass Now - Sustainable Growth and Use. https://doi.org/10.5772/55338
- Shojaeiarani, J., Bajwa, D. S., & Bajwa, S. G. (2019). Properties of densified solid biofuels in relation to chemical composition, moisture content, and bulk density of the biomass. BioResources, 14(2), 4996–5015. https://doi.org/10.15376/biores.14.2.Shojaeiarani
- Shojaeiarani, J., Bajwa, D. S., & Bajwa, S. G. (2019). Properties of densified solid biofuels in relation to chemical composition, moisture content, and bulk density of the biomass. BioResources, 14(2), 4996–5015. https://doi.org/10.15376/biores.14.2.Shojaeiarani
- Signoretto, M., Taghavi, S., Ghedini, E., & Menegazzo, F. (2019). Actual. 1–20.
- Sowmiah, S., Esperança, J. M. S. S., Rebelo, L. P. N., & Afonso, C. A. M. (2018). Pyridinium salts: From synthesis to reactivity and applications. Organic Chemistry Frontiers, 5(3), 453–493. https://doi.org/10.1039/c7qo00836h
- Sowmiah, S., Esperança, J. M. S. S., Rebelo, L. P. N., & Afonso, C. A. M. (2018). Pyridinium salts: From synthesis to reactivity and applications. Organic Chemistry Frontiers, 5(3), 453–493. https://doi.org/10.1039/c7qo00836h
- Sun, N., Rodríguez, H., Rahman, M., & Rogers, R. D. (2011). Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass? Chemical Communications, 47(5), 1405–1421. https://doi.org/10.1039/c0cc03990j
- Trulove, P. C., States, U., & Academy, N. (2014). Ionic Liquid Based Conversion of Biomass to Hydrocarbon Fuels. October.
- Uju, Nakamoto, A., Shoda, Y., Goto, M., Tokuhara, W., Noritake, Y., Katahira, S., Ishida, N., Ogino, C., & Kamiya, N. (2013). Low melting point pyridinium ionic liquid pretreatment for enhancing enzymatic saccharification of cellulosic biomass. Bioresource Technology, 135, 103–108. https://doi.org/10.1016/j.biortech.2012.06.096
- Uju, Nakamoto, A., Shoda, Y., Goto, M., Tokuhara, W., Noritake, Y., Katahira, S., Ishida, N., Ogino, C., & Kamiya, N. (2013). Low melting point pyridinium ionic liquid pretreatment for enhancing enzymatic saccharification of cellulosic biomass. Bioresource Technology, 135, 103–108. https://doi.org/10.1016/j.biortech.2012.06.096
- Uju, Nakamoto, A., Shoda, Y., Goto, M., Tokuhara, W., Noritake, Y., Katahira, S., Ishida, N., Ogino, C., & Kamiya, N. (2013). Low melting point pyridinium ionic liquid pretreatment for enhancing enzymatic saccharification of cellulosic biomass. Bioresource Technology, 135, 103–108. https://doi.org/10.1016/j.biortech.2012.06.096
- Usmani, Z., Sharma, M., Gupta, P., Karpichev, Y., Gathergood, N., Bhat, R., & Gupta, V. K. (2020). Ionic liquid based pretreatment of lignocellulosic biomass for enhanced bioconversion. Bioresource Technology, 304(November 2019), 123003. https://doi.org/10.1016/j.biortech.2020.123003
- Vancov, T., Alston, A. S., Brown, T., & McIntosh, S. (2012). Use of ionic liquids in converting lignocellulosic material to biofuels. Renewable Energy, 45, 1–6. https://doi.org/10.1016/j.renene.2012.02.033
- Vancov, T., Alston, A. S., Brown, T., & McIntosh, S. (2012). Use of ionic liquids in converting lignocellulosic material to biofuels. Renewable Energy, 45, 1–6. https://doi.org/10.1016/j.renene.2012.02.033
- Vaniz, W. F. S. (1976). Preview_2.Pdf (pp. 70–72). https://books.google.com.vn/books?hl=vi&lr=&id=HSnRp1m3DI4C&oi=fnd&pg=PA1&dq=xiphasia+setifer+morphology&ots=FzV5sKOfPQ&sig=SjTHQyHdWbkVwc-F5tmqPBdRoac&redir_esc=y#v=onepage&q=xiphasia setifer&f=false
- Vaniz, W. F. S. (1976). Preview_2.Pdf (pp. 70–72). https://books.google.com.vn/books?hl=vi&lr=&id=HSnRp1m3DI4C&oi=fnd&pg=PA1&dq=xiphasia+setifer+morphology&ots=FzV5sKOfPQ&sig=SjTHQyHdWbkVwc-F5tmqPBdRoac&redir_esc=y#v=onepage&q=xiphasia setifer&f=false
- Vaniz, W. F. S. (1976). Preview_2.Pdf (pp. 70–72). https://books.google.com.vn/books?hl=vi&lr=&id=HSnRp1m3DI4C&oi=fnd&pg=PA1&dq=xiphasia+setifer+morphology&ots=FzV5sKOfPQ&sig=SjTHQyHdWbkVwc-F5tmqPBdRoac&redir_esc=y#v=onepage&q=xiphasia setifer&f=false
- Wang, H., Zhu, C., Li, D., Liu, Q., Tan, J., Wang, C., Cai, C., & Ma, L. (2019). Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2, 5-dimethylfuran. Renewable and Sustainable Energy Reviews, 103(December 2018), 227–247. https://doi.org/10.1016/j.rser.2018.12.010
- WBA, W. B. A. (2020). GLOBAL BIOENERGY STATISTICS 2020 World Bioenergy Association. 1–64. https://worldbioenergy.org/uploads/201210 WBA GBS 2020.pdf
- Weerachanchai, P., Su, S., Leong, J., Chang, M. W., Ching, C. B., & Lee, J. (2012). Bioresource Technology Improvement of biomass properties by pretreatment with ionic liquids for bioconversion process. Bioresource Technology, 111, 453–459. https://doi.org/10.1016/j.biortech.2012.02.023
- Weichselbaumer, M. (2014). Pyridine-functionalized polymeric catalysts for CO 2 -reduction Lehramt Chemie und Mathematik Eidesstattliche Erkl ¨ arung.
- Wenten, I. G., Victoria, A. V., Tanukusuma, G., Khoiruddin, K., & Zunita, M. (2019). Simultaneous clarification and dehydration of crude palm oil using superhydrophobic polypropylene membrane. Journal of Food Engineering, 248(December 2018), 23–27. https://doi.org/10.1016/j.jfoodeng.2018.12.010
- Xu, F., Sun, J., Konda, N. V. S. N. M., Shi, J., Dutta, T., Scown, C. D., Simmons, B. A., & Singh, S. (2016). Transforming biomass conversion with ionic liquids: Process intensification and the development of a high-gravity, one-pot process for the production of cellulosic ethanol. Energy and Environmental Science, 9(3), 1042–1049. https://doi.org/10.1039/c5ee02940f
- Yan, Y., Gu, J., & Bocarsly, A. B. (2014). Hydrogen bonded pyridine dimer: A possible intermediate in the electrocatalytic reduction of carbon dioxide to methanol. Aerosol and Air Quality Research, 14(2), 515–521. https://doi.org/10.4209/aaqr.2013.06.0227
- Yoo, C. G., Pu, Y., & Ragauskas, A. J. (2017). Ionic liquids: Promising green solvents for lignocellulosic biomass utilization. Current Opinion in Green and Sustainable Chemistry, 5, 5–11. https://doi.org/10.1016/j.cogsc.2017.03.003
- Yu, J. Y. (2016). Characterization of Solid Lewis Acids in Biomass Conversion Reactions.
- Zhang, S., Sun, J., Zhang, X., Xin, J., Miao, Q., & Wang, J. (2014). Ionic liquid-based green processes for energy production. Chemical Society Reviews, 43(22), 7838–7869. https://doi.org/10.1039/c3cs60409h
- Zunita, M. (2021). Graphene oxide-based nanofiltration for Hg removal from wastewater: A mini review. Membranes, 11(4). https://doi.org/10.3390/membranes11040269
- Zunita, M., Hastuti, R., Alamsyah, A., Khoiruddin, K., & Wenten, I. G. (2021). Ionic Liquid Membrane for Carbon Capture and Separation. Separation & Purification Reviews, 1-20. https://doi.org/10.1080/15422119.2021.1920428
- Zunita, M., Makertiharta, I. G. B. N., Irawanti, R., Prasetya, N., & Wenten, I. G. (2018). Graphene Oxide-Inorganic Composite Membrane: A Review. IOP Conference Series: Materials Science and Engineering, 395(1). https://doi.org/10.1088/1757-899X/395/1/012005
- Zunita, M., Makertiharta, I. G. B. N., Saputra, F. A., Syaifi, Y. S., & Wenten, I. G. (2018). Metal oxide based antibacterial membrane. IOP Conference Series: Materials Science and Engineering, 395(1), 012021. https://doi.org/10.1088/1757-899X/395/1/012021
- Zunita, M., Wahyuningrum, D., Bundjali, B., Wenten, I. G., & Boopathy, R. (2020). Corrosion Inhibition Performances of Imidazole Derivatives-Based New Ionic Liquids on Carbon Steel in Brackish Water. Applied Sciences,10, 7069. https://doi.org/10.3390/app10207069
- Zunita, M., Wahyuningrum, D., Bundjali, B., Wenten, I. G., & Boopathy, R. (2020). The performance of 1,3-dipropyl-2-2-(2-propoxyphenyl)-4,5-diphenylimidazolium iodide based ionic liquid for biomass conversion into levulinic acid and formic acid. Bioresource Technology, 315(July), 123864. https://doi.org/10.1016/j.biortech.2020.123864
- Zunita, M., Wahyuningrum, D., Bundjali, B., & Wenten, I. G. (2021). A Concise and Efficient Synthesis of Novel Alkylated 2-(2-hydroxyphenyl)-4, 5-diphenylimidazole-based Ionic Liquids Using the MAOS Technique. Organic Preparation and Procedures International, 53, 151-156. https://doi.org/10.1080/00304948.2020.1870397
- Zunita, M., Wahyuningrum, D., Bundjali, B., Wenten, I. G., & Boopathy, R. (2021). Conversion of Glucose to 5-Hydroxymethylfurfural, Levulinic Acid, and Formic Acid in 1, 3-Dibutyl-2-(2-butoxyphenyl)-4, 5-diphenylimidazolium Iodide-Based Ionic Liquid. Applied Sciences,11, 989 https://doi.org/10.3390/app1103098
DOI: https://doi.org/10.22146/ajche.69552
Article Metrics
Abstract views : 3936 | views : 2046Refbacks
- There are currently no refbacks.
ASEAN Journal of Chemical Engineering (print ISSN 1655-4418; online ISSN 2655-5409) is published by Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada.