Recent Development of Biomass Conversion using Ionic Liquid-based Processes

https://doi.org/10.22146/ajche.69552

Megawati Zunita(1*), Risha Diah Rhamadhani(2)

(1) Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, West Java, Indonesia, 40132
(2) Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, West Java, Indonesia, 40132
(*) Corresponding Author

Abstract


The amount of biomass products generated globally increases year after year. Nature produces lignocellulose, which is largely constituted of three components in the following order: cellulose (34–50%), hemicellulose (15–35%), and lignin (5–30%). A promising conversion method known as biomass conversion employs a liquid media-based process to address the issue of an abundance of biomass as waste. Converting biomass with ionic liquid (IL) can address not only environmental issues caused by the abundance of biomass waste but also generate new energy sources or new products with economical selling value. IL can be employed as a green catalyst, solvent, or electrolyte, as well as in a number of conversion processes. In general, 1-alkyl-3-methyl-imidazolium-based cations are the most commonly used IL types for biomass conversion. The conversion conditions are relatively mild, consisting of a low temperature of around 95-220 °C, 1 atm, for 10–240 minutes. This paper review is expected to be a significant reference in the future for the development of other biomass conversion processes.


Keywords


Biomass Conversion; Development Process; Ionic Liquid

Full Text:

PDF


References

  1. Adams, P., Bridgwater, T., Lea-Langton, A., Ross, A., & Watson, I. (2018). Biomass Conversion Technologies. Report to NNFCC. In Greenhouse Gas Balances of Bioenergy Systems. Elsevier Inc. https://doi.org/10.1016/B978-0-08-101036-5.00008-2
  2. Agrela, F., Cabrera, M., Morales, M. M., Zamorano, M., & Alshaaer, M. (2018). Biomass fly ash and biomass bottom ash. In New Trends in Eco-efficient and Recycled Concrete (Vol. 3). https://doi.org/10.1016/B978-0-08-102480-5.00002-6
  3. Agrela, F., Cabrera, M., Morales, M. M., Zamorano, M., & Alshaaer, M. (2018). Biomass fly ash and biomass bottom ash. In New Trends in Eco-efficient and Recycled Concrete (Vol. 3). https://doi.org/10.1016/B978-0-08-102480-5.00002-6
  4. Anderson, J. L., & Armstrong, D. W. (n.d.). in Analytical Chemistry.
  5. Asim, A. M., Uroos, M., & Muhammad, N. (2020). Extraction of lignin and quantitative sugar release from biomass using efficient and cost-effective pyridinium protic ionic liquids. RSC Advances, 10(72), 44003–44014. https://doi.org/10.1039/d0ra09098k
  6. Asim, A. M., Uroos, M., & Muhammad, N. (2020). Extraction of lignin and quantitative sugar release from biomass using efficient and cost-effective pyridinium protic ionic liquids. RSC Advances, 10(72), 44003–44014. https://doi.org/10.1039/d0ra09098k
  7. Balat, M., Acici, N., & Ersoy, G. (2006). Trends in the use of biomass as an energy source. Energy Sources, Part B: Economics, Planning and Policy, 1(4), 367–378. https://doi.org/10.1080/15567240500400705
  8. Boz, N., Degirmenbasi, N., & Kalyon, D. M. (2009). Applied Catalysis B : Environmental Conversion of biomass to fuel : Transesterification of vegetable oil to biodiesel. 89, 590–596. https://doi.org/10.1016/j.apcatb.2009.01.026
  9. Brandt, A., Hallett, J. P., Leak, D. J., Murphy, J., & Welton, T. (2010). The effect of the ionic liquid anion in the pretreatment of pine wood chips †. 672–679. https://doi.org/10.1039/b918787a
  10. Brandt, A., Hallett, J. P., Leak, D. J., Murphy, R. J., & Welton, T. (n.d.). Supplementary Information The effect of the ionic liquid anion in the pretreatment of pine wood chips.
  11. Brandt, A., Ray, M. J., To, T. Q., Leak, D. J., Murphy, R. J., & Welton, T. (2011). Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid–water mixtures. Green Chemistry, 13(9), 2489–2499. https://doi.org/10.1039/c1gc15374a
  12. Bundhoo, Z. M. A. (2018). Microwave-assisted conversion of biomass and waste materials to biofuels. Renewable and Sustainable Energy Reviews, 82(September 2017), 1149–1177. https://doi.org/10.1016/j.rser.2017.09.066
  13. Cao, Y., Yao, S., Wang, X., & Peng, Q. (2012). T HE P HYSICAL AND C HEMICAL P ROPERTIES OF I ONIC L IQUIDS AND I TS A PPLICATION IN.
  14. Chemmangattuvalappil, N. G., Ng, D. K. S., Ng, L. Y., Ooi, J., Chong, J. W., & Eden, M. R. (2020). A review of process systems engineering (PSE) tools for the design of ionic liquids and integrated biorefineries. Processes, 8(12), 1–29. https://doi.org/10.3390/pr8121678
  15. Chinnappan, A., & Baskar, S. (2017). Conversion of Sugars Into 5-Hmf. 123–130.
  16. Chinnappan, A., Baskar, C., & Kim, H. (2016). Biomass into chemicals: Green chemical conversion of carbohydrates into 5-hydroxymethylfurfural in ionic liquids. RSC Advances, 6(68), 63991–64002. https://doi.org/10.1039/c6ra12021k
  17. Connor, R. O. (2014). ( 12 ) Patent Application Publication ( 10 ) Pub . No .: US 2014 / 0308720 A1. 1(19).
  18. D.M. Alonso, S.G. Wettstein, J.A. Dumesic, Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass, Green Chem. 15 (2013) 584–595.
  19. Dunn, P. J. (2012). The importance of green chemistry in process research and development. Chemical Society Reviews, 41(4), 1452–1461. https://doi.org/10.1039/c1cs15041c
  20. Financie, R., Moniruzzaman, M., & Uemura, Y. (2016). Enhanced enzymatic delignification of oil palm biomass with ionic liquid pretreatment. Biochemical Engineering Journal, 110, 1–7. https://doi.org/10.1016/j.bej.2016.02.008
  21. Grza, A., & Skrzypczak, A. (2019). The influence of the cation type of ionic liquid on the production of nanocrystalline cellulose and mechanical properties of chitosan-based biocomposites. 1, 4827–4840. https://doi.org/10.1007/s10570-019-02412-1
  22. Guragain, Y. N., Herrera, A. I., Vadlani, P. V., & Prakash, O. (2015). Lignins of bioenergy crops: A review. Natural Product Communications, 10(1), 201–208. https://doi.org/10.1177/1934578x1501000141
  23. Harriman, A. (2013). Prospects for conversion of solar energy into chemical fuels: The concept of a solar fuels industry. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1996). https://doi.org/10.1098/rsta.2011.0415
  24. Harriman, A. (2013). Prospects for conversion of solar energy into chemical fuels: The concept of a solar fuels industry. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1996). https://doi.org/10.1098/rsta.2011.0415
  25. Hartanto, Y., Yaswari, Y., Zunita, M., Soerawidjaja, T. H., & Indarto, A. (2017). Decolorization of crude terpineol by adsorption. Separation Science and Technology (Philadelphia), 52(12), 1967–1972. https://doi.org/10.1080/01496395.2017.1313863
  26. Hasanov, I., Raud, M., & Kikas, T. (2020). The role of ionic liquids in the lignin separation from lignocellulosic biomass. Energies, 13(18), 1–24. https://doi.org/10.3390/en13184864
  27. Hina, S., Zhu, X., Chen, Y., & Zhang, Y. (2015). Chemical Engineering Thermodynamics NU SC Graphic Abstract. CJCHE. https://doi.org/10.1016/j.cjche.2014.06.039
  28. Hong, F., Guo, X., Zhang, S., Han, S., Yang, G., & Jönsson, L. J. (2012). Bioresource Technology Bacterial cellulose production from cotton-based waste textiles : Enzymatic saccharification enhanced by ionic liquid pretreatment. Bioresource Technology, 104, 503–508. https://doi.org/10.1016/j.biortech.2011.11.028
  29. Hou, Q., Ju, M., Li, W., Liu, L., Chen, Y., Yang, Q., & Zhao, H. (2017). Pretreatment of lignocellulosic biomass with ionic liquids and ionic liquid-based solvent systems. Molecules, 22(3), 1–24. https://doi.org/10.3390/molecules22030490
  30. Ilpeläinen, I. L. K., Ie, H. A. X., Ing, A. L. K., Ranstrom, M. A. R. I. G., Eikkinen, S. A. M. I. H., & Rgyropoulos, D. I. S. A. (2007). Dissolution of Wood in Ionic Liquids. 9142–9148.
  31. Julien, P. A., Fri, T., & Julien, P. (2017). Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem., 207890, 2729–2747.
  32. Junnienkul, N., Sriariyanun, M., Douzou, T., Yasurin, P., & Asavasanti, S. (2018). Optimization of Alkyl Imidazolium Chloride Pretreatment on Rice Straw Biomass Conversion. KMUTNB International Journal of Applied Science and Technology, June. https://doi.org/10.14416/j.ijast.2018.06.002
  33. Khan, A. S., Man, Z., Bustam, M. A., Kait, C. F., Ullah, Z., Nasrullah, A., Khan, M. I., Gonfa, G., Ahmad, P., & Muhammad, N. (2016). SC. Journal of Molecular Liquids. https://doi.org/10.1016/j.molliq.2016.09.012
  34. Khan, A. S., Man, Z., Bustam, M. A., Nasrullah, A., Ullah, Z., Sarwono, A., Shah, F. U., & Muhammad, N. (2018). Efficient conversion of lignocellulosic biomass to levulinic acid using acidic ionic liquids. Carbohydrate Polymers, 181, 208–214. https://doi.org/10.1016/j.carbpol.2017.10.064
  35. Khan, A. S., Man, Z., Nasrullah, A., Ullah, Z., Muhammad, N., Rahim, A., Bustam, A., & Idris, A. (2019). Conversion of biomass to chemicals using ionic liquids. In Green Sustainable Process for Chemical and Environmental Engineering and Science: Ionic Liquids as Green Solvents. Elsevier Inc. https://doi.org/10.1016/B978-0-12-817386-2.00001-9
  36. Kim, K., Shin, B., & Lee, H. (2004). Physical and Electrochemical Properties of 1-Butyl-3-methylimidazolium Bromide ,. 21(5), 1010–1014.
  37. Krishnan, S., Quraishi, K. S., Aminuddin, N. F., Mazlan, F. A., & Leveque, J. M. (2016). Biodegradability of immidazolium, pyridinium, piperidinium and pyrrolidinium based ionic liquid in different water source. AIP Conference Proceedings, 1787. https://doi.org/10.1063/1.4968096
  38. KS, R., Ramya, C., & Varjani, S. (2019). Trends and advances in bioenergy production and sustainable solid waste management. Energy and Environment. https://doi.org/10.1177/0958305X19882415
  39. Kumar, K., Pathak, S., & Upadhyayula, S. (2020). 2nd generation biomass derived glucose conversion to 5-hydroxymethylfurfural and levulinic acid catalyzed by ionic liquid and transition metal sulfate: Elucidation of kinetics and mechanism. Journal of Cleaner Production, 256, 120292. https://doi.org/10.1016/j.jclepro.2020.120292
  40. Kunz, W., & Häckl, K. (2016). The hype with ionic liquids as solvents. Chemical Physics Letters, 661, 6–12. https://doi.org/10.1016/j.cplett.2016.07.044
  41. Labbé, N., Kline, L. M., Moens, L., Kim, K., Kim, P. C., & Hayes, D. G. (2012). Activation of lignocellulosic biomass by ionic liquid for biorefinery fractionation. Bioresource Technology, 104, 701–707. https://doi.org/10.1016/j.biortech.2011.10.062
  42. Labbé, N., Kline, L. M., Moens, L., Kim, K., Kim, P. C., & Hayes, D. G. (2012). Activation of lignocellulosic biomass by ionic liquid for biorefinery fractionation. Bioresource Technology, 104, 701–707. https://doi.org/10.1016/j.biortech.2011.10.062
  43. Lan, K., Park, S., & Yao, Y. (2019). Key issue, challenges, and status quo of models for biofuel supply chain design. In Biofuels for a More Sustainable Future: Life Cycle Sustainability Assessment and Multi-Criteria Decision Making. Elsevier Inc. https://doi.org/10.1016/B978-0-12-815581-3.00010-5
  44. Lan, K., Park, S., & Yao, Y. (2019). Key issue, challenges, and status quo of models for biofuel supply chain design. In Biofuels for a More Sustainable Future: Life Cycle Sustainability Assessment and Multi-Criteria Decision Making. Elsevier Inc. https://doi.org/10.1016/B978-0-12-815581-3.00010-5
  45. Li, C., & Zhao, Z. K. (2008). Acid in ionic liquid : An efficient system for hydrolysis of lignocellulose. 177–182. https://doi.org/10.1039/b711512a
  46. Li, M., Luo, N., & Lu, Y. (2017). Biomass energy technological paradigm (BETP): Trends in this sector. Sustainability (Switzerland), 9(4), 1–28. https://doi.org/10.3390/su9040567
  47. Liu, D. D. J., & Chen, E. Y. X. (2013). Polymeric ionic liquid (PIL)-supported recyclable catalysts for biomass conversion into HMF. Biomass and Bioenergy, 48(Il), 181–190. https://doi.org/10.1016/j.biombioe.2012.11.020
  48. Liu, L., Li, Z., Hou, W., & Shen, H. (2018). Direct conversion of lignocellulose to levulinic acid catalyzed by ionic liquid. Carbohydrate Polymers, 181(November 2017), 778–784. https://doi.org/10.1016/j.carbpol.2017.11.078
  49. Liu, Y., Wu, Y., Su, M., Liu, W., Li, X., & Liu, F. (2020). Developing Brønsted–Lewis acids bifunctionalized ionic liquids based heteropolyacid hybrid as high-efficient solid acids in esterification and biomass conversion. Journal of Industrial and Engineering Chemistry, 92, 200–209. https://doi.org/10.1016/j.jiec.2020.09.005
  50. Liu, Y., Wu, Y., Su, M., Liu, W., Li, X., & Liu, F. (2020). Developing Brønsted–Lewis acids bifunctionalized ionic liquids based heteropolyacid hybrid as high-efficient solid acids in esterification and biomass conversion. Journal of Industrial and Engineering Chemistry, 92, 200–209. https://doi.org/10.1016/j.jiec.2020.09.005
  51. Luque, R., De, S., & Balu, A. M. (2016). Catalytic conversion of biomass. Catalysts, 6(10), 10–11. https://doi.org/10.3390/catal6100148
  52. Lynam, J. G., Toufiq Reza, M., Vasquez, V. R., & Coronella, C. J. (2012). Pretreatment of rice hulls by ionic liquid dissolution. Bioresource Technology, 114, 629–636. https://doi.org/10.1016/j.biortech.2012.03.004
  53. Makertihartha, I. G. B. N., Dharmawijaya, P.T., Zunita, M., & Wenten, I.G. (2017). Post combustion CO2 capture using zeolite membrane. AIP Conference Proceedings, 1818. https://doi.org/10.1063/1.4979941
  54. Makertihartha, I. G. B. N., Rizki, Z., Zunita, M., & Dharmawijaya, P. T. (2017). Dyes removal from textile wastewater using graphene based nanofiltration. AIP Conference Proceedings, 1840, 110006. https://doi.org/10.1063/1.498233
  55. Makertihartha, I. G. B. N., Zunita, M., Rizki, Z., & Dharmawijaya, P. T. (2017). Solvent extraction of gold using ionic liquid based process. AIP Conference Proceedings, 1805. https://doi.org/10.1063/1.4974419
  56. Makertihartha, I. G. B. N., Zunita, M., Rizki, Z., & Dharmawijaya, P. T. (2017). Supported ionic liquid membrane in membrane reactor. AIP Conference Proceedings, 1788, 040003. https://doi.org/10.1063/1.4968391
  57. Mehrdadfar1, A., & , Majid Amidpour2, N. B. and A. A. S. (2016). World Bioenergy Congress and Expo. Journal of Fundamentals of Renewable Energy and Applications, 6(3), 4541.
  58. Mehrdadfar1, A., & , Majid Amidpour2, N. B. and A. A. S. (2016). World Bioenergy Congress and Expo. Journal of Fundamentals of Renewable Energy and Applications, 6(3), 4541.
  59. Mudhoo, A., Torres-Mayanga, P. C., Forster-Carneiro, T., Sivagurunathan, P., Kumar, G., Komilis, D., & Sánchez, A. (2018). A review of research trends in the enhancement of biomass-to-hydrogen conversion. Waste Management, 79, 580–594. https://doi.org/10.1016/j.wasman.2018.08.028
  60. Muhammad, N., Man, Z., Bustam, M. A., Mutalib, M. I. A., Wilfred, C. D., & Rafiq, S. (2011). Dissolution and Delignification of Bamboo Biomass Using Amino Acid-Based Ionic Liquid. 998–1009. https://doi.org/10.1007/s12010-011-9315-y
  61. N.A.S. Ramli, N.A.S. Amin, A new functionalized ionic liquid for efficient glucose conversion to 5-hydroxymethyl furfural and levulinic acid, J. Mol. Catal. A Chem. 407 (2015) 113–121.
  62. Naqi, A. (2018). Conversion of Biomass to Liquid Hydrocarbon Fuels via Anaerobic Digestion: A Feasibility Study. ProQuest Dissertations and Theses, March, 114.
  63. Nargotra, P., Sharma, V., Gupta, M., Kour, S., & Bajaj, B. K. (2018). Application of ionic liquid and alkali pretreatment for enhancing saccharification of sunflower stalk biomass for potential biofuel-ethanol production. Bioresource Technology, 267(May), 560–568. https://doi.org/10.1016/j.biortech.2018.07.070
  64. Naz, S., Uroos, M., Asim, A. M., Muhammad, N., & Shah, F. U. (2020). One-Pot Deconstruction and Conversion of Lignocellulose Into Reducing Sugars by Pyridinium-Based Ionic Liquid–Metal Salt System. Frontiers in Chemistry, 8(April), 1–11. https://doi.org/10.3389/fchem.2020.00236
  65. Naz, S., Uroos, M., Asim, A. M., Muhammad, N., & Shah, F. U. (2020). One-Pot Deconstruction and Conversion of Lignocellulose Into Reducing Sugars by Pyridinium-Based Ionic Liquid–Metal Salt System. Frontiers in Chemistry, 8(April), 1–11. https://doi.org/10.3389/fchem.2020.00236
  66. Naz, S., Uroos, M., Asim, A. M., Muhammad, N., & Shah, F. U. (2020). One-Pot Deconstruction and Conversion of Lignocellulose Into Reducing Sugars by Pyridinium-Based Ionic Liquid–Metal Salt System. Frontiers in Chemistry, 8(April), 1–11. https://doi.org/10.3389/fchem.2020.00236
  67. Ofrasio, B. I. G., de Luna, M. D. G., Chen, Y. C., Abarca, R. R. M., Dong, C. Di, & Chang, K. L. (2020). Catalytic conversion of sugars and biomass to furanic biofuel precursors by boron-doped biochar in ionic liquid. Bioresource Technology Reports, 11(July), 100515. https://doi.org/10.1016/j.biteb.2020.100515
  68. P. Dhurjati, Biorefineries-industrial processes and products, status quo and future directions:volumes 1 and 2 by Birgit Kamm, Patrick Gruber and Michael Kamm, AICHE J. 54 (2008) 3036.
  69. Perea-Moreno, M. A., Samerón-Manzano, E., & Perea-Moreno, A. J. (2019). Biomass as renewable energy: Worldwide research trends. Sustainability (Switzerland), 11(3). https://doi.org/10.3390/su11030863
  70. Perea-Moreno, M. A., Samerón-Manzano, E., & Perea-Moreno, A. J. (2019). Biomass as renewable energy: Worldwide research trends. Sustainability (Switzerland), 11(3). https://doi.org/10.3390/su11030863
  71. Puligundla P, Oh SE, Mok C. Microwave-assisted pretreatment technologies for the conversion of lignocellulosic biomass to sugars and ethanol: a review. Carbon Lett2016;17:1–10.
  72. R.E. Quiroz-Castan˜eda, J.L. Folch-Mallol, Hydrolysis of biomass mediated by cellulases for the production of sugars, in: Sustainable Degradation of Lignocellulosic
  73. Ren, X. Y., Feng, X. B., Cao, J. P., Tang, W., Wang, Z. H., Yang, Z., Zhao, J. P., Zhang, L. Y., Wang, Y. J., & Zhao, X. Y. (2020). Catalytic Conversion of Coal and Biomass Volatiles: A Review. Energy and Fuels, 34(9), 10307–10363. https://doi.org/10.1021/acs.energyfuels.0c01432
  74. Rogers, R. D., & Macfarlane, D. (n.d.). Ionic Liquids web themed issue. https://doi.org/10.1039/c2cc30357d
  75. Ruya, P.M., Lim, S.S., Purwadi, R., & Zunita, M. (2020). Sustainable hydrogen production from oil palm derived wastes through autothermal operation of supercritical water gasification system. Energy, 208, 118280. https://doi.org/10.1016/j.energy.2020.118280
  76. Segneanu, A.-E., Sziple, F., Vlazan, P., Sfarloaga, P., Grozesku, I., & Daniel, V. (2013). Biomass Extraction Methods. Biomass Now - Sustainable Growth and Use. https://doi.org/10.5772/55338
  77. Shojaeiarani, J., Bajwa, D. S., & Bajwa, S. G. (2019). Properties of densified solid biofuels in relation to chemical composition, moisture content, and bulk density of the biomass. BioResources, 14(2), 4996–5015. https://doi.org/10.15376/biores.14.2.Shojaeiarani
  78. Shojaeiarani, J., Bajwa, D. S., & Bajwa, S. G. (2019). Properties of densified solid biofuels in relation to chemical composition, moisture content, and bulk density of the biomass. BioResources, 14(2), 4996–5015. https://doi.org/10.15376/biores.14.2.Shojaeiarani
  79. Signoretto, M., Taghavi, S., Ghedini, E., & Menegazzo, F. (2019). Actual. 1–20.
  80. Sowmiah, S., Esperança, J. M. S. S., Rebelo, L. P. N., & Afonso, C. A. M. (2018). Pyridinium salts: From synthesis to reactivity and applications. Organic Chemistry Frontiers, 5(3), 453–493. https://doi.org/10.1039/c7qo00836h
  81. Sowmiah, S., Esperança, J. M. S. S., Rebelo, L. P. N., & Afonso, C. A. M. (2018). Pyridinium salts: From synthesis to reactivity and applications. Organic Chemistry Frontiers, 5(3), 453–493. https://doi.org/10.1039/c7qo00836h
  82. Sun, N., Rodríguez, H., Rahman, M., & Rogers, R. D. (2011). Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass? Chemical Communications, 47(5), 1405–1421. https://doi.org/10.1039/c0cc03990j
  83. Trulove, P. C., States, U., & Academy, N. (2014). Ionic Liquid Based Conversion of Biomass to Hydrocarbon Fuels. October.
  84. Uju, Nakamoto, A., Shoda, Y., Goto, M., Tokuhara, W., Noritake, Y., Katahira, S., Ishida, N., Ogino, C., & Kamiya, N. (2013). Low melting point pyridinium ionic liquid pretreatment for enhancing enzymatic saccharification of cellulosic biomass. Bioresource Technology, 135, 103–108. https://doi.org/10.1016/j.biortech.2012.06.096
  85. Uju, Nakamoto, A., Shoda, Y., Goto, M., Tokuhara, W., Noritake, Y., Katahira, S., Ishida, N., Ogino, C., & Kamiya, N. (2013). Low melting point pyridinium ionic liquid pretreatment for enhancing enzymatic saccharification of cellulosic biomass. Bioresource Technology, 135, 103–108. https://doi.org/10.1016/j.biortech.2012.06.096
  86. Uju, Nakamoto, A., Shoda, Y., Goto, M., Tokuhara, W., Noritake, Y., Katahira, S., Ishida, N., Ogino, C., & Kamiya, N. (2013). Low melting point pyridinium ionic liquid pretreatment for enhancing enzymatic saccharification of cellulosic biomass. Bioresource Technology, 135, 103–108. https://doi.org/10.1016/j.biortech.2012.06.096
  87. Usmani, Z., Sharma, M., Gupta, P., Karpichev, Y., Gathergood, N., Bhat, R., & Gupta, V. K. (2020). Ionic liquid based pretreatment of lignocellulosic biomass for enhanced bioconversion. Bioresource Technology, 304(November 2019), 123003. https://doi.org/10.1016/j.biortech.2020.123003
  88. Vancov, T., Alston, A. S., Brown, T., & McIntosh, S. (2012). Use of ionic liquids in converting lignocellulosic material to biofuels. Renewable Energy, 45, 1–6. https://doi.org/10.1016/j.renene.2012.02.033
  89. Vancov, T., Alston, A. S., Brown, T., & McIntosh, S. (2012). Use of ionic liquids in converting lignocellulosic material to biofuels. Renewable Energy, 45, 1–6. https://doi.org/10.1016/j.renene.2012.02.033
  90. Vaniz, W. F. S. (1976). Preview_2.Pdf (pp. 70–72). https://books.google.com.vn/books?hl=vi&lr=&id=HSnRp1m3DI4C&oi=fnd&pg=PA1&dq=xiphasia+setifer+morphology&ots=FzV5sKOfPQ&sig=SjTHQyHdWbkVwc-F5tmqPBdRoac&redir_esc=y#v=onepage&q=xiphasia setifer&f=false
  91. Vaniz, W. F. S. (1976). Preview_2.Pdf (pp. 70–72). https://books.google.com.vn/books?hl=vi&lr=&id=HSnRp1m3DI4C&oi=fnd&pg=PA1&dq=xiphasia+setifer+morphology&ots=FzV5sKOfPQ&sig=SjTHQyHdWbkVwc-F5tmqPBdRoac&redir_esc=y#v=onepage&q=xiphasia setifer&f=false
  92. Vaniz, W. F. S. (1976). Preview_2.Pdf (pp. 70–72). https://books.google.com.vn/books?hl=vi&lr=&id=HSnRp1m3DI4C&oi=fnd&pg=PA1&dq=xiphasia+setifer+morphology&ots=FzV5sKOfPQ&sig=SjTHQyHdWbkVwc-F5tmqPBdRoac&redir_esc=y#v=onepage&q=xiphasia setifer&f=false
  93. Wang, H., Zhu, C., Li, D., Liu, Q., Tan, J., Wang, C., Cai, C., & Ma, L. (2019). Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2, 5-dimethylfuran. Renewable and Sustainable Energy Reviews, 103(December 2018), 227–247. https://doi.org/10.1016/j.rser.2018.12.010
  94. WBA, W. B. A. (2020). GLOBAL BIOENERGY STATISTICS 2020 World Bioenergy Association. 1–64. https://worldbioenergy.org/uploads/201210 WBA GBS 2020.pdf
  95. Weerachanchai, P., Su, S., Leong, J., Chang, M. W., Ching, C. B., & Lee, J. (2012). Bioresource Technology Improvement of biomass properties by pretreatment with ionic liquids for bioconversion process. Bioresource Technology, 111, 453–459. https://doi.org/10.1016/j.biortech.2012.02.023
  96. Weichselbaumer, M. (2014). Pyridine-functionalized polymeric catalysts for CO 2 -reduction Lehramt Chemie und Mathematik Eidesstattliche Erkl ¨ arung.
  97. Wenten, I. G., Victoria, A. V., Tanukusuma, G., Khoiruddin, K., & Zunita, M. (2019). Simultaneous clarification and dehydration of crude palm oil using superhydrophobic polypropylene membrane. Journal of Food Engineering, 248(December 2018), 23–27. https://doi.org/10.1016/j.jfoodeng.2018.12.010
  98. Xu, F., Sun, J., Konda, N. V. S. N. M., Shi, J., Dutta, T., Scown, C. D., Simmons, B. A., & Singh, S. (2016). Transforming biomass conversion with ionic liquids: Process intensification and the development of a high-gravity, one-pot process for the production of cellulosic ethanol. Energy and Environmental Science, 9(3), 1042–1049. https://doi.org/10.1039/c5ee02940f
  99. Yan, Y., Gu, J., & Bocarsly, A. B. (2014). Hydrogen bonded pyridine dimer: A possible intermediate in the electrocatalytic reduction of carbon dioxide to methanol. Aerosol and Air Quality Research, 14(2), 515–521. https://doi.org/10.4209/aaqr.2013.06.0227
  100. Yoo, C. G., Pu, Y., & Ragauskas, A. J. (2017). Ionic liquids: Promising green solvents for lignocellulosic biomass utilization. Current Opinion in Green and Sustainable Chemistry, 5, 5–11. https://doi.org/10.1016/j.cogsc.2017.03.003
  101. Yu, J. Y. (2016). Characterization of Solid Lewis Acids in Biomass Conversion Reactions.
  102. Zhang, S., Sun, J., Zhang, X., Xin, J., Miao, Q., & Wang, J. (2014). Ionic liquid-based green processes for energy production. Chemical Society Reviews, 43(22), 7838–7869. https://doi.org/10.1039/c3cs60409h
  103. Zunita, M. (2021). Graphene oxide-based nanofiltration for Hg removal from wastewater: A mini review. Membranes, 11(4). https://doi.org/10.3390/membranes11040269
  104. Zunita, M., Hastuti, R., Alamsyah, A., Khoiruddin, K., & Wenten, I. G. (2021). Ionic Liquid Membrane for Carbon Capture and Separation. Separation & Purification Reviews, 1-20. https://doi.org/10.1080/15422119.2021.1920428
  105. Zunita, M., Makertiharta, I. G. B. N., Irawanti, R., Prasetya, N., & Wenten, I. G. (2018). Graphene Oxide-Inorganic Composite Membrane: A Review. IOP Conference Series: Materials Science and Engineering, 395(1). https://doi.org/10.1088/1757-899X/395/1/012005
  106. Zunita, M., Makertiharta, I. G. B. N., Saputra, F. A., Syaifi, Y. S., & Wenten, I. G. (2018). Metal oxide based antibacterial membrane. IOP Conference Series: Materials Science and Engineering, 395(1), 012021. https://doi.org/10.1088/1757-899X/395/1/012021
  107. Zunita, M., Wahyuningrum, D., Bundjali, B., Wenten, I. G., & Boopathy, R. (2020). Corrosion Inhibition Performances of Imidazole Derivatives-Based New Ionic Liquids on Carbon Steel in Brackish Water. Applied Sciences,10, 7069. https://doi.org/10.3390/app10207069
  108. Zunita, M., Wahyuningrum, D., Bundjali, B., Wenten, I. G., & Boopathy, R. (2020). The performance of 1,3-dipropyl-2-2-(2-propoxyphenyl)-4,5-diphenylimidazolium iodide based ionic liquid for biomass conversion into levulinic acid and formic acid. Bioresource Technology, 315(July), 123864. https://doi.org/10.1016/j.biortech.2020.123864
  109. Zunita, M., Wahyuningrum, D., Bundjali, B., & Wenten, I. G. (2021). A Concise and Efficient Synthesis of Novel Alkylated 2-(2-hydroxyphenyl)-4, 5-diphenylimidazole-based Ionic Liquids Using the MAOS Technique. Organic Preparation and Procedures International, 53, 151-156. https://doi.org/10.1080/00304948.2020.1870397
  110. Zunita, M., Wahyuningrum, D., Bundjali, B., Wenten, I. G., & Boopathy, R. (2021). Conversion of Glucose to 5-Hydroxymethylfurfural, Levulinic Acid, and Formic Acid in 1, 3-Dibutyl-2-(2-butoxyphenyl)-4, 5-diphenylimidazolium Iodide-Based Ionic Liquid. Applied Sciences,11, 989 https://doi.org/10.3390/app1103098





DOI: https://doi.org/10.22146/ajche.69552

Article Metrics

Abstract views : 3636 | views : 1890

Refbacks

  • There are currently no refbacks.


ASEAN Journal of Chemical Engineering  (print ISSN 1655-4418; online ISSN 2655-5409) is published by Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada.