Skip to main navigation menu Skip to main content Skip to site footer

Research article

Vol 17 No 2 (2023): Volume 17, Number 2, 2023

Pengaruh penambahan fly ash PLTU Cirebon dan temperatur pengeringan terhadap kuat tekan material konstruksi beton high volume fly ash (HFVA)

DOI
https://doi.org/10.22146/jrekpros.77825
Submitted
November 29, 2023
Published
December 31, 2023

Abstract

Penggunaaan batubara sebagai sumber energi di negara berkembang seperti Indonesia masih menjadi pilihan utama. Hasil samping pembakaran batubara di Pembangkit Listrik Tenaga Uap (PLTU) berupa fly ash dan bottom ash (FABA) akan terus meningkat seriring konsumsi bataubara sebagai energi meningkat. Industri semen dapat mengahsilkan 2,9 miliar ton CO2 ke atmosfer hal ini akan berdampak langsung terhadap kenaikan temperatur bumi dan pemansan global. Subtitusi material semen dengan fly ash menjadi sebuah pilihan yang ramah lingkungan dalam meminimalisir gas CO2. Pembuatan beton dimulai dengan mencampurkan fly ash dan semen pada berbagai rasio (1:1; 1:3 ; 1:4) dengan air. Air dituang secara bertahap sedikit demi sedikit sambil diaduk hingga membentuk pasta. Pasta beton yang telah terbentuk dicetak pada cetakan kubus ukuran 5x5x5 cm3. Cetakan pasta HVFA didiamkan selama 1 hari, kemudian dikeringkan (curing) pada temperatur yang divariasikan (30, 40 dan 60°C). Hasil Analisa oksida komponen kimia menunjukan bahwa fly ash dari PLTU Cirebon tergolong kategori fly ash kelas C dengan kadar CaO lebih dari 10% dan SiO2 kurang dari 46% dan Kekuatan beton (compressive strength) HVFA yang  paling besar yang dapat dihasilkan beton HVFA adalah pada rasio komposisi semen dan fly ash 1:3 dengan temperatur pengeringan 40°C. material fly ash mampu menggantikan semen sebesar 75% dari kebutuhan beton HVFA dengan kekuatan beton mencapai 12,557 MPa pada kondisi pengeringan 40°C. Hasil optimasi menunjukan variable yang paling berpengaruh terhadap kuat tekan beton yang dihasilkan adalah temperatur pengeringan.

References

  1. Addassi M, Danmarks Tekniske Universitet DTU Byg. 2018. Transport in concrete with new CO↓2-reduced cements : reactivetransportmodelfordurabilityestimations: Ph.D. thesis. [[Doctoral thesis]]: doi:10.13140/RG.2.2.29764.48 006.
  2. Adelizar AS, Olvianas M, Adythia DM, Syafiyurrahman MF, Pratama IG, Astuti W, Petrus HT. 2020. Fly Ash and Bottom Ash Utilization as Geopolymer: Correlation on Compressive Strength and Degree of Polymerization Observed using FTIR. IOP Conference Series: Materials Science and Engineering. 742(1):1. doi:10.1088/1757-899X/ 742/1/012042.
  3. Anindhita F, Pengkajian B, Teknologi P, Sugiyono A, Boedoyo MS. 2015. Evaluation of Renewable Energy Policies in Indonesia View project Energy System Optimization View project. Available: www.bppt.go.id. www.bppt.go.id.
  4. Besari DAA, Anggara F, Rosita W, Petrus HT. 2022. Characterization and mode of occurrence of rare earth elements and yttrium in fly and bottom ash from coal-fired power plants in Java, Indonesia. International Journal of Coal Science and Technology. 9(1):1. doi:10.1007/s40789-022 -00476-2.
  5. Breig SJM, Luti KJK. 2021. Response surface methodology: A review on its applications and challenges in microbial cultures. Materials Today: Proceedings. 42:2277–2284. doi:10.1016/j.matpr.2020.12.316.
  6. ESDM. 2015. Kementerian ESDM RI - Media Center - Arsip Berita - Peluncuran Program Pembangunan Pembangkit 35.000 MW.
  7. Fernández-Jiménez A, Palomo A, Sobrados I, Sanz J. 2006. The role played by the reactive alumina content in the alkaline activation of fly ashes. Microporous and Mesoporous Materials. 91(1-3):111–119. doi:10.1016/j.micromeso. 2005.11.015.
  8. Hartono M, Astrayudha MA, Petrus HTBM, Budhijanto W, Sulistyo H. 2017. Lithium recovery of spent lithium-ion battery using bioleaching from local sources microorganism. Rasayan Journal of Chemistry. doi:10.7324/RJC.20 17.1031767.
  9. Hemalatha T, Ramaswamy A. 2017. A review on fly ash characteristics – Towards promoting high volume utilization in developing sustainable concrete. Journal of Cleaner Production. 147:546–559. doi:10.1016/j.jclepro.2017.01.114.
  10. Herbudiman B, Taufik Akbar D. 2015. Kajian Korelasi Rasio Air-Powder dan Kadar Abu Terbang Terhadap Kinerja Beton HVFA. Prosiding Konferensi Nasional Teknik Sipil. 9(9):7–8.
  11. Lawrence P, Cyr M, Ringot E. 2003. Mineral admixtures in mortars: Effect of inert materials on short-term hydration. Cement and Concrete Research. 33(12):1939–1947. doi:10.1016/S0008-8846(03)00183-2.
  12. Lianasari E, Aji C. 2017. Pengaruh Kadar Fly Ash Terhadap Kinerja Beton HVFA.
  13. Manurung H, Rosita W, Bendiyasa IM, Prasetya A, Anggara F, Astuti W, Djuanda DR, Petrus HTBM. 2020. Recovery of Rare Earth Elements and Yitrium from non-Magnetic Coal Fly Ash using Acetic Acid Solution. Metal Indonesia. 42(1):35. doi:10.32423/jmi.2020.v42.35-42. http: //jurnalmetal.or.id/jmi/article/view/187.
  14. Mocharla IR, Selvam R, Govindaraj V, Muthu M. 2022. Performance and life-cycle assessment of high-volume fly ash concrete mixes containing steel slag sand. Construction and Building Materials. 341. doi:10.1016/j.conbuildmat.20 22.127814.
  15. Narmluk M, Nawa T. 2011. Effect of fly ash on the kinetics of Portland cement hydration at different curing temperatures. Cement and Concrete Research. 41(6):579–589. doi:10.1016/j.cemconres.2011.02.005.
  16. Pacheco-Torgal F, Labricha JA, Leonelli C, Palomo A, Chindaprasirt P. 2015. Handbook of Alkali-activated Cement, Mortars and Concrates. volume 1 edition. Woodhead Publishing.
  17. Petrus HTBM, Fairuz FI, Sa’dan N, Olvianas M, Astuti W, Jenie SN, Setiawan FA, Anggara F, Ekaputri JJ, Bendiyasa IM. 2021. Green geopolymer cement with dry activator from geothermal sludge and sodium hydroxide. Journal of Cleaner Production. 293. doi:10.1016/j.jclepro.2021.126143.
  18. Petrus HTBM, Olvianas M, Shafiyurrahman MF, Pratama IGAAN,JenieSNA,AstutiW,NurpratamaMI,EkaputriJJ,Anggara F. 2022. Circular Economy of Coal Fly Ash and Silica Geothermal for Green Geopolymer: Characteristic and Kinetic Study. doi:10.3390/gels8040233.
  19. Petrus HTBM, Olvianas M, Suprapta W, Setiawan FA, Prasetya A, Sutijan, Anggara F. 2020. Cenospheres characterization from Indonesian coal-fired power plant fly ash and their potential utilization. Journal of Environmental Chemical Engineering. 8(5):104116. doi:10.1016/j.jece.2020.10 4116.
  20. Petrus HTBM, Rhamdani AR, Putera ADP, Warmada IW, Yuliansyad AT, Perdana I. 2016. Kinetics study of carbon raiser on the reduction of nickel laterite from Pomalaa, Southeast Sulawesi. IOP Conference Series: Materials Science and Engineering. 162(1):012019. doi:10.1088/1757-899 X/162/1/012019.
  21. Prihutami P, Prasetya A, Sediawan WB, Petrus HTBM, Anggara F. 2021. Study on Rare Earth Elements Leaching from Magnetic Coal Fly Ash by Citric Acid. Journal of Sustainable Metallurgy. 7(3):1241–1253. doi:10.1007/s40831-021-0 0414-7.
  22. Prihutami P, Sediawan WB, Prasetya A, Petrus HTBM. 2022. A product diffusion model for the extraction of cerium and yttrium from magnetic coal fly ash using citric acid solution. International Journal of Technology. 13(4):921. doi:10.14716/ijtech.v13i4.4826.
  23. Pu S, Zhu Z, Song W, Huo W, Zhang C. 2022. A eco-friendly acid fly ash geopolymer with a higher strength. Construction and Building Materials. 335. doi:10.1016/j.conbuild mat.2022.127450.
  24. Qurrahman AH, Wilopo W, Susanto SP, Petrus HTBM. 2021. Energy and exergy analysis of Dieng geothermal power plant. International Journal of Technology. 12(1):175. doi: 10.14716/ijtech.v12i1.4218.
  25. Rida L, Alaoui AH. 2022. Effect of high volume fly ash and curing temperature on delayed ettringite formation. Materials Today: Proceedings. 58:1285–1293. doi:10.1016/j.ma tpr.2022.02.110.
  26. Rivera F, Martínez P, Castro J, López M. 2015. Massive volume fly-ash concrete: A more sustainable material with fly ash replacing cement and aggregates. Cement and Concrete Composites. 63:104–112. doi:10.1016/j.cemcon comp.2015.08.001.
  27. Shaikh FU, Supit SW. 2015. Compressive strength and durability properties of high volume fly ash (HVFA) concretes containing ultrafine fly ash (UFFA). Construction and Building Materials. 82:192–205. doi:10.1016/j.conbuildmat. 2015.02.068.
  28. Shen W, Zhang Z, Li J, Li Z, Wang Z, Cao L, Rong G, Wu M, Zhao D, Zhao Z. 2022. Experimental investigation on the highvolume fly ash ecological self-compacting concrete. Journal of Building Engineering. 1051:105163. doi:10.1016/j. jobe.2022.105163.
  29. Silva PD, Sagoe-Crenstil K, Sirivivatnanon V. 2007. Kinetics of geopolymerization: Role of Al2O3 and SiO2. Cement and Concrete Research. 37(4):512–518. doi:10.1016/j.cemcon res.2007.01.003.
  30. Sindhunata, Van Deventer JS, Lukey GC, Xu H. 2006. Effect of curing temperature and silicate concentration on flyash-based geopolymerization. Industrial and Engineering Chemistry Research. 45(10):3559–3568. doi:10.102 1/ie051251p.
  31. Sujoto VSH, Sutijan, Astuti W, Sumardi S, Louis ISY, Petrus HTBM. 2022. Effect of operating conditions on lithium recovery from synthetic geothermal brine using electrodialysis method. Journal of Sustainable Metallurgy. 8(1):274–287. doi:10.1007/s40831-021-00488-3.
  32. Yoshitake I, Komure H, Nassif AY, Fukumoto S. 2013. Tensile properties of high volume fly-ash (HVFA) concrete with limestone aggregate. Construction and Building Materials. 49:101–109. doi:10.1016/j.conbuildmat.2013.08.020.
  33. Yun CM, Ngu C, Liing K. 2021. Compressive Strength of HighVolume Fly Ash (HVFA) Concrete as a Function of Lime Water and Curing Time. Research Square:1–21.
  34. Zhang K, Johnson L, Vara Prasad P, Pei Z, Wang D. 2015. Big bluestem as a bioenergy crop: A review. Renewable and Sustainable Energy Reviews. 52:740–756. doi:10.1016/j.rs er.2015.07.144.