Date Log
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Emissions and Potential of Global Warming of N2O Gas of Mangrove Litter Degradation on the West Muna Regency Coast
Corresponding Author(s) : Rahman Rahman
Jurnal Ilmu Kehutanan,
Vol 17 No 2 (2023): September
Abstract
Comprehensive research was conducted in the mangrove ecosystem of West Muna Regency to investigate the absorption of greenhouse gas (GHG) and degradation of its litter-produced GHG emissions, including N2O and carbon. The ecosystem consisted of four stations, namely Mangrove Maginti (station I), Mangrove Tiworo Tengah (station II), Mangrove Tiworo Islands (station III), and Mangrove Sawerigadi (Station IV). The research aimed to determine emissions and global warming potential (GWP) of N2O gas resulting from the degradation of mangrove litter. The team used a syringe mounted on the hood to collect gas samples and gas chromatography for concentration analysis. The correlation of emissions to environmental variables was analyzed using the Pearson correlation method. The results showed that all species' most significant and smallest average emissions were at stations III and II, with values of 0.0019 mg/m2/hour and 0.0015 mg/m2/hour, respectively. Water temperature showed a weak relationship with N2O emissions, namely r = 0.3511 (p <0.05), while water salinity did not strongly correlate with N2O emissions (r=-0.4471; p<0.05). The average GWP value ranged from 0.3665–0.6314 CO2e mg/m2/hour. Species R. apiculata and B. cylindrica at stations III and II had the largest and smallest GWP values of 0.8392 and 0.1912 CO2e mg/m2/hour, respectively.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Allen DE, Dalal RC, Rennenberg H, Schmidt S. 2011. Seasonal variation in nitrous oxide and methane emissions from the subtropical estuary and coastal mangrove sediments, Australia. Plant Biol. 13: 126 – 33. https://doi.org/10.1111/j.1438-8677.2010.00331.x
- Asch RG, Cheung WWL, Reygondeau G. 2017. Future marine ecosystem drivers, biodiversity, and fisheries maximum catch potential in Pacific Island countries and territories under climate change. Mar Pol; http://dx.doi.org/10.1016/j.marpol.2017.08.015.
- Badjeck MC, Allison EH, Halls AS, Dulvy NK. 2010. Impacts of climate variability and change on fishery-based livelihoods. Mar Pol 2010; 34: 375 – 83. https://doi.org/10.1016/j.marpol.2009.08.007
- Brander K. 2010. Impacts of climate change on fisheries. J Mar Sys. 79: 389 – 402. http://dx.doi.org/10.1016/j.jmarsys.2008.12.015
- Castillo JAA, Apan AA, Maraseni TN, Salmo III SG. 2017. Soil greenhouse gas fluxes in tropical mangrove forests and in land use on deforested mangrove lands. Catena; 159: 60 – 9. http://dx.doi.org/10.1016/j.catena.2017.08.005
- Chen GC, Tam N.F.Y., Ye Y. 2010. Summer fluxes of atmospheric greenhouse gases N2O, CH4, and CO2 from mangrove soil in South China. Sci Tot Environ; 408: 2761 – 7. doi:10.1016/j.scitotenv.2010.03.007
- Chen GC, Tam N.F.Y., Ye Y. 2012. Spatial and seasonal variations of atmospheric N2O and CO2 fluxes from a subtropical mangrove swamp and their relationships with soil characteristics. Soil Biol Biochem. 48: 175 – 81. doi:10.1016/j.soilbio.2012.01.029
- Cheung W.W.L., Lam V.W.Y., Sarmiento JL, Kearney K, Watson R, Pauly D. 2009. Projecting global marine biodiversity impacts under climate change scenario. Fish Fisher. DOI 10.1111/j.1467-2979.2008.00315.x.
- Coulthard S. 2008. Adapting to environmental change in artisanal fisheries-insight from a South Indian Lagoon. Glo Environ Cha. 18: 479 – 89. https://doi.org/10.1016/j.gloenvcha.2008.04.003
- Corredor JE, Moorel JM, Bauza J. 1999. Atmospheric Nitrous Oxide fluxes from mangrove sediments. Marine Pollution Bulletin. 38 (6): 473-478. https://doi.org/10.1016/S0025-326X(98)00172-6
- Donato DC., Kauffman JB., Mackenzie RA., Ainsworth A., Pfleeger AZ. 2012. Whole-island carbon stock in tropical pacific: Implications for mangrove conservation and upland restoration. J. Environ. Manage. 97:89-96. https://doi.org/10.1016/j.jenvman.2011.12.004
- Drinkwater KF, Beaugrand G, Kaeriyama M, Kid S, Ottersen G, Perry RI, Pörtner HO, Polovina JJ, Takasuka A. 2009. On the processes linking climate to ecosystem changes. J Mar Sys. 79: 374 – 88. https://doi.org/10.1016/j.jmarsys.2008.12.014
- Hernandez EM, Junca-Gomez D. 2020. Carbon stocks and greenhouse gas emissions (CH4 and N2O) in mangroves with different vegetation assemblies in the central coastal plain of Veracruz Mexico. Sci of the Tot Environ; 741: https://doi.org/10.1016/j.scitotenv.2020.140276
- Hogarth PJ. 2007. The Biology of Mangroves and Seagrasses. America, U.S. Oxford University Press.
- Huang J, Chen Y, Sui P, Nie S, Gao W. 2014. Soil Nitrous Oxide Emissions Under Maize-Legume Intercropping System in the North China Plain. J of Integrative Agriculture. 13(6): 1363-1372. https://doi.org/10.1016/S2095-3119(13)60509-2
- I.P.C.C. Climate Change. 2001. The Intergovernmental Panel on climate change a scientific basis. Cambridge UK: Cambridge University Press.
- Jones PD. 2013. Greenhouse effect and climate data. Reference Mod Earth Syst Environ Sci. 1 – 17. https://doi.org/10.1016/B978-0-12-409548-9.05365-3
- Kent State University. 2023. SPSS tutorials: Pearson Correlation. Diakses pada hari Kamis 8 Juni 2023 melalui link https://libguides.library.kent.edu/SPSS/PearsonCorr.
- Konnerup D, Portela JMB, Villamil C, Parra JP. 2014. Nitrous oxide and methane emissions from the restored mangrove ecosystem of the Ciénaga Grande de Santa Marta, Colombia. Estuar Coast Shelf Scie; 30: 1 – 9. https://doi.org/10.1016/j.ecss.2014.01.006
- Kreuswiezer J, Buchholz J, Rennenberg H. 2003. Emission of methane and nitrous oxide by Australian mangrove ecosystems. Plant Biol; 5: 423 – 31. DOI: 10.1055/s-2003-42712
- Ma J, Niu A, Liao Z, Qin J, Xu S, Lin C. 2023. Factors affecting N2O fluxes from heavy metal-contamined mangrove soils in a subtropical estuary. Mar Pol Bullet; 186. https://doi.org/10.1016/j.marpolbul.2022.114425
- Nazareth DR, Gonzalves MJ. 2022. Influence of seasonal and environmental variables on the emission of methane from the mangrove sediments of Goa. Environ Monit Assess. 194:249. doi: https://doi.org/10.1007/s10661-021-09734-3
- Noor YR, Khazali M, Suryadiputra INN. 2006. Pengenalan Ekosistem Mangrove di Indonesia. Bogor, ID: Wetlands International – Indonesia Programme.
- Ohwayo RO, Natugonza V, Musinguzi L, Olokotum M, Naigaga S. 2016. Implications of climate variability and change for African lake ecosystems, fisheries productivity, and livelihoods. J Great Lakes Res; 42: 498 – 510. https://doi.org/10.1016/j.jglr.2016.03.004
- Pathak H. 1999. Emission of nitrous oxide from soil. Article Reviews. Current Science. 77(3): 359-360. https://www.jstor.org/stable/24102954.
- Purvaja R, Ramesh R. 2001. Natural and anthropogenic methane emission from coastal wetlands of South India. Environ Manage. 27: 547 – 57. doi: 10.1111/j.1365-2486.2004.00834.x
- Rahman, Yanuarita, D., Nurdin, N. 2014. Struktur komunitas mangrove di Kabupatean Muna. Torani Jurnal Ilmu Kelautan dan Perikanan, 24(2): 29-36.
- Rahman, Yulianda F, Rusmana I, Wardiatno Y. 2018. Fluxes of greenhouse gases CO2, CH4, and N2O from mangrove soil in Tallo River, Makassar. J Trop Biol; 18: 149 – 58. DOI: 10.29303/jbt.v18i2.755
- Rahman, Wardiatno, Y., Yulianda, F., Rusmana, I., 2020a. Socio-ecological system of carbon-based mangrove ecosystem on the coast of West Muna Regency, Southeast Sulawesi, Indonesia. AACL Bioflux. 13(2): 518-528. http://www.bioflux.com.ro/docs/2020.518-528.pdf
- Rahman, Wardiatno, Y., Yulianda, F., Rusmana, I., 2020b. Seasonal fluxes of CO2, CH4, and N2O greenhouse gases in various mangrove species on West Muna Regency, Southeast Sulawesi, Indonesia coast. Plant Archives. 20(2): 4301 – 4311.
- Rusmana I. 2006. Gaseous end products of nitrate and nitrite reduction by denitrifying Pseudomonads isolated from estuarine sediment. J Microbiol Indones, 11(2): 279-291.
- Shawket N, Elmadhi Y, Kharrim KE, Belghyti D. 2019. Impacts of climate change on fish performance. J Entomol Zoo Stud; 7: 343 – 49.
- Wang H, Zhou S, Li X, Liu H, Chi D, Xu K. 2016. The influence of climate change and human activities on ecosystem service value. Ecol Engin. 87: 224 – 39. https://doi.org/10.1016/j.ecoleng.2015.11.027