Association of fat mass and obesity associate (FTO) single nucleotide polymorphisms in the first intron and obesity risk among Indonesians
Abstract
Obesity is one of the global pandemics characterized by an excessive fat buildup due to disruption of energy homeostasis in the body. As obesity is a risk factor for many other non-communicable diseases such as diabetes and coronary heart disease, it is crucial to understand the risk factors that contribute to the pathogenesis of obesity. Although obesity is mainly caused due to unhealthy lifestyles, genetic predisposition also plays a part in the pathogenesis of obesity. Individuals who carry risk alleles for genes that control energy balance in the body have a greater risk of developing obesity. Fat mass and obesity associate (FTO) is a gene strongly correlated with obesity and is widely expressed in the hypothalamus. This gene is predicted to have 89 common variations that affect obesity-related phenotypes. Among Indonesians, the three most studied single nucleotide polymorphisms (SNPs) in the first intron of the FTO gene are rs1421085, rs17817449, and rs9939609. They are strongly associated with obesity’s related traits such as weight gain, fat mass, body mass index (BMI), waist, and hip sizes. rs993609 is the most studied among diverse ethnicities in Indonesia, with AA genotype and allele A as a risk allele.
References
WHO. Obesity [Internet]. [cited 2023 Apr 20]. Available from: https://www.who.int/health-topics/obesity#tab=tab_1
Powell-Wiley TM, Poirier P, Burke LE, Després JP, Gordon-Larsen P, Lavie CJ, et al. Obesity and cardiovascular disease: A scientific statement from the American Heart Association. Circulation 2021; 143(21):e984-e1010.
https://doi.org/10.1161/CIR.0000000000000973
Hussain A, Mahawar K, Xia Z, Yang W, EL-Hasani S. Obesity and mortality of COVID-19. Meta-analysis. Obes Res Clin Pract 2020; 14(4):295-300.
https://doi.org/10.1016/j.orcp.2020.07.002
Nurcahyo F. Kaitan antara obesitas dan aktivitas fisik. Medikora 2015; (1):87-96.
https://doi.org/10.21831/medikora.v0i1.4663
Hill JO, Wyatt HR, Peters JC. Energy balance and obesity. Circulation 2012; 126(1):126-32.
https://doi.org/10.1161/CIRCULATIONAHA.111.087213
Bouchard C. Childhood obesity: are genetic differences involved? Am J Clin Nutr 2009; 89(5):1494S-501.
https://doi.org/10.3945/AJCN.2009.27113C
Goodarzi MO. Genetics of obesity: what genetic association studies have taught us about the biology of obesity and its complications. Lancet Diabetes Endocrinol 2018; 6(3):223-36.
https://doi.org/10.1016/S2213-8587(17)30200-0
Loos RJF, Bouchard C. FTO: The first gene contributing to common forms of human obesity. Obes Rev 2008; 9(3):246-50.
https://doi.org/10.1111/j.1467-789X.2008.00481.x
Merkestein M, Laber S, McMurray F, Andrew D, Sachse G, Sanderson J, et al. FTO influences adipogenesis by regulating mitotic clonal expansion. Nature Communications 2015; 6:6792
https://doi.org/10.1038/ncomms7792
Sun C, Kovacs P, Guiu-Jurado E. Genetics of obesity in East Asians. Front Genet 2020; 11:575049.
https://doi.org/10.3389/fgene.2020.575049
Schwartz MW, Seeley RJ, Zeltser LM, Drewnowski A, Ravussin E, Redman LM, et al. Obesity pathogenesis: An endocrine society scientific statement. Endocr Rev 2017; 38(4):267-96.
https://doi.org/10.1210/ER.2017-00111
Oussaada SM, van Galen KA, Cooiman MI, Kleinendorst L, Hazebroek EJ, van Haelst MM, et al. The pathogenesis of obesity. Metabolism 2019; 92:26–36.
https://doi.org/10.1016/j.metabol.2018.12.012
Bray GA. Epidemiology, risks and pathogenesis of obesity. Meat Sci 2005; 71(1)2-7.
https://doi: 10.1016/j.meatsci.2005.04.009
Thaker VV. Genetic and epigenetic causes of obesity. Adolesc Med State Art Rev 2017; 28(2):379-405.
Kalantari N, Mohammadi NK, Izadi P, Doaei S, Gholamalizadeh M, Eini-Zinab H, et al. A haplotype of three SNPs in FTO had a strong association with body composition and BMI in Iranian male adolescents. PloS One 2018; 13(4):e0195589
https://doi.org/10.1371/journal.pone.0195589
Loos RJF, Yeo GSH. The bigger picture of FTO – The first GWAS-identified obesity gene. Nat Rev Endocrinol 2014; 10(1):51-61.
https://doi.org/10.1038/nrendo.2013.227
Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban HJ, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet 2009; 41(5):527-34.
https://doi.org/10.1038/ng.357
Tan JT, Dorajoo R, Seielstad M, Sim XL, Ong RTH, Chia KS, et al. FTO variants are associated with obesity in the Chinese and malay populations in Singapore. Diabetes 2008; 57(10):2851-7.
https://doi.org/10.2337/db08-0214
Yang Q, Xiao T, Guo J, Su Z. Complex relationship between obesity and the fat mass and obesity locus. Int J Biol Sci 2017; 13(5):615-29.
https://doi.org/10.7150/ijbs.17051
Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007; 316(5826):889-94.
https://doi.org10.1126/SCIENCE.1141634
Gerken T, Girard CA, Tung YCL, Webby CJ, Saudek V, Hewitson KS, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate–dependent nucleic acid demethylase. Science 2007; 318(5855):1469-72.
https://doi.org/10.1126/science.1151710
Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 2011; 7(12):885-7.
https://doi.org/10.1038/nchembio.687
Zhou Y, Hambly BD, McLachlan CS. FTO associations with obesity and telomere length. J Biomed Sci 2017; 24(1):65.
https://doi.org/10.1186/s12929-017-0372-6
Tung YCL, Gulati P, Liu CH, Rimmington D, Dennis R, Ma M, et al. FTO is necessary for the induction of leptin resistance by high-fat feeding. Mol Metab 2015; 4(4):287-98.
https://doi.org/10.1016/j.molmet.2015.01.011
Martin-Carli JF. RPGRIP1L and FTO – genes implicated in the effects of FTO intronic sequence variants on food intake – also affect adipogenesis and adipocyte biology. 2017
https://doi.org/10.7916/D8PV6XT2
Ben-Haim MS, Moshitch-Moshkovitz S, Rechavi G. FTO: linking m6A demethylation to adipogenesis. Cell Res 2015; 25(1):3-4.
https://doi.org/10.1038/cr.2014.162
Zhao X, Yang Y, Sun BF, Zhao YL, Yang YG. FTO and obesity: Mechanisms of association. Curr Diab Rep 2014; 14(5):486.
https://doi.org/10.1007/s11892-014-0486-0
Church C, Moir L, McMurray F, Girard C, Banks GT, Teboul L, et al. Overexpression of FTO leads to increased food intake and results in obesity. Nat Genet 2010; 42(12):1086-92.
https://doi.org/10.1038/ng.713
Pulit SL, Stoneman C, Morris AP, Wood AR, Glastonbury CA, Tyrrell J, et al. Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry. Hum Mol Genet 2019; 28(1):166-74.
https://doi.org/10.1093/hmg/ddy327
Karra E, O’Daly OG, Choudhury AI, Yousseif A, Millership S, Neary MT, et al. A link between FTO, ghrelin, and impaired brain food-cue responsivity. J Clin Invest 2013; 123(8):3539-51.
https://doi.org/10.1172/JCI44403
Sébert SP, Hyatt MA, Chan LY, Yiallourides M, Fainberg HP, Patel N, et al. Influence of prenatal nutrition and obesity on tissue specific fat mass and obesity-associated (FTO) gene expression. Reproduction 2010; 139(1):265-74.
https://doi.org/10.1530/REP-09-0173
Caruso V, Chen H, Morris MJ. Early hypothalamic FTO overexpression in response to maternal obesity – potential contribution to postweaning hyperphagia. PLoS One 2011; 6(9):e25261.
https://doi.org/10.1371/journal.pone.0025261
Lan N, Lu Y, Zhang Y, Pu S, Xi H, Nie X, et al. FTO – A common genetic basis for obesity and cancer. Front Genet 2020; 11:559138.
https://doi.org/10.3389/fgene.2020.559138
Stratigopoulos G, LeDuc CA, Cremona ML, Chung WK, Leibel RL. Cut-like homeobox 1 (CUX1) regulates expression of the fat mass and obesity-associated and retinitis pigmentosa GTPase regulator-interacting protein-1-like (RPGRIP1L) genes and coordinates leptin receptor signaling. J Biol Chem 2011; 286(3):2155-70.
https://doi.org/10.1074/jbc.M110.188482
Yang Z, Yu G, Zhu X, Peng T, Lv Y. Critical roles of FTO-mediated mRNA m6A demethylation in regulating adipogenesis and lipid metabolism: Implications in lipid metabolic disorders. Genes Dis 2021; 9(1):51-61.
https://doi.org/10.1016/j.gendis.2021.01.005
Jewell JL, Guan KL. Nutrient signaling to mTOR and cell growth. Trends Biochem Sci 2013; 38(5):233-42.
https://doi.org/10.1016/j.tibs.2013.01.004
Aldiss P, Betts J, Sale C, Pope M, Budge H, Symonds ME. Exercise-induced ‘browning’ of adipose tissues. Metabolism 2018; 81:63–70.
https://doi.org/10.1016/j.metabol.2017.11.009
Hruby A, Hu FB. The Epidemiology of Obesity: A big picture. Pharmacoeconomics 2015; 33(7):673-89.
https://doi.org/10.1007/S40273-014-0243-X
Sedaghati-khayat B, Barzin M, Akbarzadeh M, Guity K, Fallah MS, Pourhassan H, et al. Lack of association between FTO gene variations and metabolic healthy obese (MHO) phenotype: Tehran Cardio-metabolic Genetic Study (TCGS). Eat Weight Disord 2020; 25(1):25-35.
https://doi.org/10.1007/S40519-018-0493-2
Maharani Citra, Puspasari. A. Peran variasi gen FTO pada obesitas. Jmj 2019; 7(2):161-6.
https://doi.org/10.22437/jmj.v7i2.8018
Berulava T, Horsthemke B. The obesity-associated SNPs in intron 1 of the FTO gene affect primary transcript levels. Eur J Hum Genet 2010; 18(9):1054-6.
https://doi.org/10.1038/EJHG.2010.71
Daya M, Pujianto DA, Witjaksono F, Priliani L, Susanto J, Lukito W, et al. Obesity risk and preference for high dietary fat intake are determined by FTO rs9939609 gene polymorphism in selected Indonesian adults. Asia Pac J Clin Nutr 2019; 28(1):183-91.
https://doi.org/10.6133/apjcn.201903_28(1).0024
Salim S, Kartawidjajaputra F, Suwanto A. Association of FTO rs9939609 and cd36 rs1761667 with visceral obesity. J Nutr Sci Vitaminol (Tokyo) 2020; 66(Supplement):S329-35.
https://doi.org/10.3177/jnsv.66.S329
Priliani L, Oktavianthi S, Hasnita R, Nussa HT, Inggriani RC, Febinia CA, et al. Obesity in the Balinese is associated with FTO rs9939609 and rs1421085 single nucleotide polymorphisms. PeerJ 2020; 8:e8327.
https://doi.org/10.7717/peerj.8327
Lubis SM, Fattah M, Damanik HA, Batubara JRL. Association of fat mass and obesity-associated gene (FTO) rs9939609 variant with early onset obesity among Bataknese and Chinese Children in Indonesia: A Case-control study. Indones Biomed J 2017; 9(3):147-52.
https://doi.org/10.18585/inabj.v9i3.322
Susmiati, Lipoeto NI, Surono IS, Jamsari. Association of Fat mass and obesity-associated rs9939609 polymorphisms and eating behaviour and food preferences in adolescent Minankabau girls. Pak J Nut 2018; 17(10):471-9.
https://doi.org/10.3923/PJN.2018.471.479
Alsulami S, Aji AS, Ariyasra U, Sari SR, Tasrif N, Yani FF, et al. Interaction between the genetic risk score and dietary protein intake on cardiometabolic traits in Southeast Asian. Genes Nutr 2020; 15(1):19.
https://doi.org/10.1186/S12263-020-00678-w
Al-Jawadi AA, Priliani L, Oktavianthi S, Febinia CA, Daya M, Artika IM, et al. Association of FTO rs1421085 single nucleotide polymorphism with fat and fatty acid intake in Indonesian adults. BMC Res Notes 2021; 14(1):411.
https://doi.org/10.21203/rs.3.rs-690802/v1
Li H, Kilpeläinen TO, Liu C, Zhu J, Liu Y, Hu C, et al. Association of genetic variation in FTO with risk of obesity and type 2 diabetes with data from 96,551 East and South Asians. Diabetologia 2012; 55(4):981-95.
https://doi.org/10.1007/S00125-011-2370-7
Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban HJ, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet 2009; 41(5):527-34.
https://doi.org/10.1038/NG.357
Tan JT, Dorajoo R, Seielstad M, Sim XL, Ong RTH, Chia KS, et al. FTO variants are associated with obesity in the Chinese and Malay populations in Singapore. Diabetes 2008; 57(10):2851-7.
https://doi.org/10.2337/DB08-0214
Solak M, Ozdemir Erdogan M, Yildiz SH, Ucok K, Yuksel S, Arıkan Terzi ES, et al. Association of obesity with rs1421085 and rs9939609 polymorphisms of FTO gene. Mol Biol Rep 2014; 41(11):7381-6.
https://doi.org/10.1007/s11033-014-3627-2
Arrizabalaga M, Larrarte E, Margareto J, Maldonado-Martín S, Barrenechea L, Labayen I. Preliminary findings on the influence of FTO rs9939609 and MC4R rs17782313 polymorphisms on resting energy expenditure, leptin and thyrotropin levels in obese non-morbid premenopausal women. J Physiol Biochem 2014; 70(1):255-62.
https://doi.org/10.1007/S13105-013-0300-5
Ferreira Todendi P, de Moura Valim AR, Klinger E, Reuter CP, Molina S, Martínez JA, et al. The role of the genetic variants IRX3 rs3751723 and FTO rs9939609 in the obesity phenotypes of children and adolescents. Obes Res Clin Pract 2019; 13(2):137-42.
https://doi.org/10.1016/J.ORCP.2019.01.005
Kilpeläinen TO, Qi L, Brage S, Sharp SJ, Sonestedt E, Demerath E, et al. Physical Activity Attenuates the Influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children. PloS Med 2011; 8(11):e1001116.
https://doi.org/10.1371/journal.pmed.1001116
Wang L, Yu Q, Xiong Y, Liu L, Zhang X, Zhang Z, et al. Variant rs1421085 in the FTO gene contribute childhood obesity in Chinese children aged 3-6 years. Obes Res Clin Pract 2013; 7(1):e14-22
https://doi.org/10.1016/j.orcp.2011.12.007
Bo X, Mi J. FTO polymorphisms are associated with obesity but not with diabetes in East Asian populations: a meta-analysis. Biomed Environ Sci 2009; 22(6):449-57.
https://doi.org/10.1016/S0895-3988(10)60001-3
Priliani L, Oktavianthi S, Hasnita R, Nussa HT, Inggriani RC, Febinia CA, et al. Obesity in the Balinese is associated with FTO rs9939609 and rs1421085 single nucleotide polymorphisms. PeerJ 2020; 8:e8327
https://doi.org/10.7717/peerj.8327
Cha SW, Choi SM, Kim KS, Park BL, Kim JR, Kim JY, et al. Replication of genetic effects of FTO polymorphisms on BMI in a Korean population. Obesity. 2008; 16(9):2187-9.
https://doi.org/10.1038/oby.2008.314
Claussnitzer M, Dankel SN, Kim KH, Quon G, Meuleman W, Haugen C, et al. FTO obesity variant circuitry and adipocyte browning in humans. N Engl J Med 2015; 373(10):895-907.
https://doi.org/10.1056/NEJMoa1502214
Xi B, Mi J. FTO polymorphisms are associated with obesity but not with diabetes in East Assian populations: a meta¬analysis. Biomed Environ Sci 2009; 22(6):449-57.
https://doi.org/10.1016/S0895-3988(10)60001-3
Qian Y, Liu S, Lu F, Li H, Dong M, Lin Y, et al. Genetic variant in fat mass and obesity-associated gene associated with type 2 diabetes risk in Han Chinese. BMC Genet 2013; 14:86.
https://doi.org/10.1186/1471-2156-14-86
Adhiyanto C, Mutia Nasir N, Sari FR, Pamungkas G, Azis I, Harriyati Z, et al. Preliminary study: identification of DNA variation with SNP numbers rs1137101 and rs8050136 in patient’s type 2 diabetes mellitus at Salsabila clinic Bogor Indonesia. Biotech Env Sc 2019; 21(4):112–5
Kwon O, Kim KW, Kim MS. Leptin signalling pathways in hypothalamic neurons. Cell Mol Life Sci 2016; 73(7):1457-77.
https://doi.org/10.1007/S00018-016-2133-1
Dorris ER, O’Neill A, Treacy A, Klocker H, Teltsh O, Kay E, et al. The transcription factor CUX1 negatively regulates invasion in castrate resistant prostate cancer. Oncotarget 2020; 11(9):846-57.
https://doi.org/10.18632/oncotarget.27494
Lan N, Lu Y, Zhang Y, Pu S, Xi H, Nie X, et al. FTO – A Common Genetic Basis for Obesity and Cancer. Front Genet 2020; 11:559138.
https://doi.org/10.3389/fgene.2020.559138
Schlauch KA, Read RW, Lombardi VC, Elhanan G, Metcalf WJ, Slonim AD, et al. A Comprehensive Genome-Wide and Phenome-Wide Examination of BMI and Obesity in a Northern Nevadan Cohort. G3: Genes, Genomes, Genetics 2020; 10(2):645-64.