Geigeria Alata- a Potential Source for Anti-Alzheimer’s Constituents: In Vitro and Computational Investigations

  • Wadah Osman Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
  • Mohamed A. Maaz Department of Pharmacognosy, Faculty of Pharmacy, Omdurman Islamic University, 382, Khartoum, Sudan
  • Amna Ali Medical Biochemistry Research Department, Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, Khartoum, Sudan
  • Eltayeb Fadul Medical Biochemistry Research Department, Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, Khartoum, Sudan
  • Ahmed H. Arbab Department of Pharmacognosy, Faculty of Pharmacy, University of Khartoum, Al-Qasr Ave, 11111, Khartoum, Sudan
  • Mosab Yahya Al-Nour Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sudan University of Science and Technology
  • Ahmed Ashour Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
  • Asmaa E. Sherif Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
  • Hamada S. Abulkhair Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt
  • Sabrin R.M Ibrahim Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia
  • Kholoud F. Ghazawi Clinical Pharmacy Department, College of Pharmacy, Umm Al-Qura University, Makkah 24382, Saudi Arabia
  • Gamal A. Mohamed Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
  • Mona S. Mohamed Department of Pharmacognosy, Faculty of Pharmacy, University of Khartoum, Al-Qasr Ave, 11111, Khartoum, Sudan
Keywords: Alzheimer’s disease; Drug-likeness; Flavonoid content; Oxidative stress; Molecular docking; Quercetin; Hispidulin; Health and wellbeing

Abstract

Antioxidants and acetylcholinesterase inhibitors play a key role in the prevention and management of degenerative disorders including Alzheimer’s disease in particular. Identifying new anticholinesterases from natural sources may contribute to combating this class of diseases. The present study aimed to evaluate the potential anti-Alzheimer’s activity of Geigeria alata (DC), a plant used in Sudanese folkloric medicine. Accordingly, the whole DC plant extract including twenty phytoconstituents of phenolic, flavonoid, and tannin types was evaluated in vitro as antioxidants and acetylcholinesterase inhibitors. As well, their pharmacokinetics, drug likeliness, and toxicity profiles were assessed. Additionally, the virtual binding of the plant’s phytoconstituents with the cholinesterase target was investigated by docking against two AChE X-ray crystallographic structures. The best effective DPPH radical scavenging activity was demonstrated by both ethyl acetate and n-butanol fractions with percentages of inhibition of 91 ± 0.02% and 90 ± 0.02% (IC50 22 ± 0.01 and 66 ± 0.02 µg/mL), respectively. The ethyl acetate fraction showed statistically significant, and the highest AChE inhibitory activity (78% inhibition, IC50 0.246 ± 0.02 mg/mL). Furthermore, the ethyl acetate fraction exhibited the highest total phenolic, flavonoid, and tannin values. Among identified compounds, quercetin and hispidulin showed promising in silico anti-AChE activity and hence merit further studies for the isolation and characterization of these active constituents.

 

Author Biographies

Wadah Osman, Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia

 

 

Mohamed A. Maaz, Department of Pharmacognosy, Faculty of Pharmacy, Omdurman Islamic University, 382, Khartoum, Sudan

 

 

Amna Ali, Medical Biochemistry Research Department, Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, Khartoum, Sudan

 

 

Eltayeb Fadul, Medical Biochemistry Research Department, Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, Khartoum, Sudan

 

 

Ahmed H. Arbab, Department of Pharmacognosy, Faculty of Pharmacy, University of Khartoum, Al-Qasr Ave, 11111, Khartoum, Sudan

 

 

Mosab Yahya Al-Nour, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sudan University of Science and Technology

 

 

Ahmed Ashour, Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia

 

 

Asmaa E. Sherif, Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia

 

 

Hamada S. Abulkhair, Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt

 

 

Kholoud F. Ghazawi, Clinical Pharmacy Department, College of Pharmacy, Umm Al-Qura University, Makkah 24382, Saudi Arabia

 

 

Gamal A. Mohamed , Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia

 

 

References

Abul-Khair, H., Elmeligie, S., Bayoumi, A., Ghiaty, A., El-Morsy, A., Hassan, M.H., 2013. Synthesis and evaluation of some new (1,2,4) triazolo(4,3-a)quinoxalin- 4(5h)-one derivatives as AMPA receptor antagonists. J. Heterocycl. Chem. 50, 1202–1208. https://doi.org/10.1002/jhet.714
Abulkhair, H.S., Elmeligie, S., Ghiaty, A., El-Morsy, A., Bayoumi, A.H., Ahmed, H.E.A., El-Adl, K., Zayed, M.F., Hassan, M.H., Akl, E.N., El-Zoghbi, M.S., 2021. In vivo- and in silico-driven identification of novel synthetic quinoxalines as anticonvulsants and AMPA inhibitors. Arch. Pharm. (Weinheim). 354, 2000449. https://doi.org/10.1002/ardp.202000449
Adjimani, J.P., Asare, P., 2015. Antioxidant and free radical scavenging activity of iron chelators. Toxicol. Reports 2, 721–728. https://doi.org/10.1016/j.toxrep.2015.04.005
Ainsworth, E.A., Gillespie, K.M., 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat. Protoc. 2, 875–877. https://doi.org/10.1038/nprot.2007.102
Aiyegoro, O.A., Okoh, A.I., 2010. Preliminary phytochemical screening and In vitro antioxidant activities of the aqueous extract of Helichrysum longifolium DC. BMC Complement. Altern. Med. 10, 21. https://doi.org/10.1186/1472-6882-10-21
Aljuhani, A., Ahmed, H.E.A., Ihmaid, S.K., Omar, A.M., Althagfan, S.S., Alahmadi, Y.M., Ahmad, I., Patel, H., Ahmed, S., Almikhlafi, M.A., El-Agrody, A.M., Zayed, M.F., Turkistani, S.A., Abulkhair, S.H., Almaghrabi, M., Salama, S.A., Al-Karmalawy, A.A., Abulkhair, H.S., 2022. In vitro and computational investigations of novel synthetic carboxamide-linked pyridopyrrolopyrimidines with potent activity as SARS-CoV-2-M Pro inhibitors. RSC Adv. 12, 26895–26907. https://doi.org/10.1039/D2RA04015H
Amarowicz, R., 2007. Tannins: the new natural antioxidants? Eur. J. Lipid Sci. Technol. 109, 549–551. https://doi.org/10.1002/ejlt.200700145
Barbosa, M.L., de Meneses, A.-A.P.M., de Aguiar, R.P.S., de Castro e Sousa, J.M., de Carvalho Melo Cavalcante, A.A., Maluf, S.W., 2020. Oxidative stress, antioxidant defense and depressive disorders: A systematic review of biochemical and molecular markers. Neurol. Psychiatry Brain Res. 36, 65–72. https://doi.org/10.1016/j.npbr.2020.02.006
Berman, H.M., Battistuz, T., Bhat, T.N., Bluhm, W.F., Bourne, P.E., Burkhardt, K., Feng, Z., Gilliland, G.L., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J.D., Zardecki, C., 2002. The Protein Data Bank. Acta Crystallogr. Sect. D Biol. Crystallogr. 58, 899–907. https://doi.org/10.1107/S0907444902003451
Cheung, J., Rudolph, M.J., Burshteyn, F., Cassidy, M.S., Gary, E.N., Love, J., Franklin, M.C., Height, J.J., 2012. Structures of Human Acetylcholinesterase in Complex with Pharmacologically Important Ligands. J. Med. Chem. 55, 10282–10286. https://doi.org/10.1021/jm300871x
Cragg, G.M., Newman, D.J., 2013. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta - Gen. Subj. 1830, 3670–3695. https://doi.org/10.1016/j.bbagen.2013.02.008
Daina, A., Michielin, O., Zoete, V., 2017. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 7, 42717. https://doi.org/10.1038/srep42717
Dinis, T.C.P., Madeira, V.M.C., Almeida, L.M., 1994. Action of Phenolic Derivatives (Acetaminophen, Salicylate, and 5-Aminosalicylate) as Inhibitors of Membrane Lipid Peroxidation and as Peroxyl Radical Scavengers. Arch. Biochem. Biophys. 315, 161–169. https://doi.org/10.1006/abbi.1994.1485
Dvir, H., Silman, I., Harel, M., Rosenberry, T.L., Sussman, J.L., 2010. Acetylcholinesterase: From 3D structure to function. Chem. Biol. Interact. 187, 10–22. https://doi.org/10.1016/j.cbi.2010.01.042
Eissa, K.I., Kamel, M.M., Mohamed, L.W., Kassab, A.E., 2023. Development of new Alzheimer’s disease drug candidates using donepezil as a key model. Arch. Pharm. (Weinheim). 356, 2200398. https://doi.org/10.1002/ardp.202200398
El-Adl, K., El-Helby, A.G.A., Sakr, H., Ayyad, R.R., Mahdy, H.A., Nasser, M., Abulkhair, H.S., El-Hddad, S.S.A., 2021a. Design, synthesis, molecular docking, anticancer evaluations, and in silico pharmacokinetic studies of novel 5-[(4-chloro/2,4-dichloro)benzylidene]thiazolidine-2,4-dione derivatives as VEGFR-2 inhibitors. Arch. Pharm. (Weinheim). 354, e202000279. https://doi.org/10.1002/ardp.202000279
El-Adl, K., Sakr, H., El-Hddad, S.S.A., El-Helby, A.G.A., Nasser, M., Abulkhair, H.S., 2021b. Design, synthesis, docking, ADMET profile, and anticancer evaluations of novel thiazolidine-2,4-dione derivatives as VEGFR-2 inhibitors. Arch. Pharm. (Weinheim). 354, 2000491. https://doi.org/10.1002/ardp.202000491
EL-Kamali, H.H., EL-amir, M.Y., 2010. Antibacterial Activity and Phytochemical Screening of Ethanolic Extracts Obtained from Selected Sudanese Medicinal Plants. Curr. Res. J. Biol. Sci. 2, 143–146.
El-Shershaby, M.H., Ghiaty, A., Bayoumi, A.H., Ahmed, H.E.A., El-Zoghbi, M.S., El-Adl, K., Abulkhair, H.S., 2021. 1,2,4-Triazolo[4,3- c ]quinazolines: a bioisosterism-guided approach towards the development of novel PCAF inhibitors with potential anticancer activity . New J. Chem. 45, 11136–11152. https://doi.org/10.1039/d1nj00710f
Ellman, G.L., Courtney, K.D., Andres, V., Featherstone, R.M., 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7, 88–95. https://doi.org/10.1016/0006-2952(61)90145-9
Evans, W., n.d. Trease and Evans’ Pharmacognosy, 16th ed. Elsevier.
Ezzat, H.G., Bayoumi, A.H., Sherbiny, F.F., El-Morsy, A.M., Ghiaty, A., Alswah, M., Abulkhair, H.S., 2021. Design, synthesis, and molecular docking studies of new [1,2,4]triazolo[4,3-a]quinoxaline derivatives as potential A2B receptor antagonists. Mol. Divers. 25, 291–306. https://doi.org/10.1007/s11030-020-10070-w
Fadol, E.M., Suliman, H.M., Osman, B., Abdalla, S.A., Osman, W.J.A., Mohamed, E.M., Abdoon, I.H., 2021. Therapeutic outcomes evaluation of adjuvant hyperbaric oxygen therapy for non-healing diabetic foot ulcers among sudanese patients. Diabetes Metab. Syndr. Clin. Res. Rev. 15, 102173. https://doi.org/10.1016/j.dsx.2021.06.010
Fadul, E., Nizamani, A., Rasheed, S., Adhikari, A., Yousuf, S., Parveen, S., Gören, N., Alhazmi, H.A., Choudhary, M.I., Khalid, A., 2020. Anti-glycating and anti-oxidant compounds from traditionally used anti-diabetic plant Geigeria alata (DC) Oliv. & Hiern. Nat. Prod. Res. 34, 2456–2464. https://doi.org/10.1080/14786419.2018.1542388
Fährrolfes, R., Bietz, S., Flachsenberg, F., Meyder, A., Nittinger, E., Otto, T., Volkamer, A., Rarey, M., 2017. ProteinsPlus: a web portal for structure analysis of macromolecules. Nucleic Acids Res. 45, W337–W343. https://doi.org/10.1093/nar/gkx333
Gharat, R., Prabhu, A., Khambete, M.P., 2022. Potential of triazines in Alzheimer’s disease: A versatile privileged scaffold. Arch. Pharm. (Weinheim). 355, 2100388. https://doi.org/10.1002/ardp.202100388
Guo, C., Sun, L., Chen, X., Zhang, D., 2013. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen. Res. 8, 2003–14. https://doi.org/10.3969/j.issn.1673-5374.2013.21.009
Heim, K.E., Tagliaferro, A.R., Bobilya, D.J., 2002. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 13, 572–584. https://doi.org/10.1016/S0955-2863(02)00208-5
Heinrich, M., Appendino, G., Efferth, T., Fürst, R., Izzo, A.A., Kayser, O., Pezzuto, J.M., Viljoen, A., 2020. Best practice in research – Overcoming common challenges in phytopharmacological research. J. Ethnopharmacol. 246, 112230. https://doi.org/10.1016/j.jep.2019.112230
Ji, C., Svensson, F., Zoufir, A., Bender, A., 2018. eMolTox: prediction of molecular toxicity with confidence. Bioinformatics 34, 2508–2509. https://doi.org/10.1093/bioinformatics/bty135
Khan, H., Ullah, H., Aschner, M., Cheang, W.S., Akkol, E.K., 2019. Neuroprotective Effects of Quercetin in Alzheimer’s Disease. Biomolecules 10, 59. https://doi.org/10.3390/biom10010059
Khedr, F., Ibrahim, M.K., Eissa, I.H., Abulkhair, H.S., El-Adl, K., 2021. Phthalazine-based VEGFR-2 inhibitors: Rationale, design, synthesis, in silico, ADMET profile, docking, and anticancer evaluations. Arch. Pharm. (Weinheim). 354, 202100201. https://doi.org/10.1002/ardp.202100201
Kutkat, O., Moatasim, Y., Al‐Karmalawy, A.A., Abulkhair, H.S., Gomaa, M.R., El-Taweel, A.N., Abo Shama, N.M., GabAllah, M., Mahmoud, D.B., Kayali, G., Ali, M.A., Kandeil, A., Mostafa, A., 2022. Robust antiviral activity of commonly prescribed antidepressants against emerging coronaviruses: in vitro and in silico drug repurposing studies. Sci. Rep. 12, 12920. https://doi.org/10.1038/s41598-022-17082-6
Luedtke, R.R., Freeman, R.A., Volk, M., Arfan, M., Reinecke, M.G., 2003. Pharmacological Survey of Medicinal Plants for Activity at Dopamine Receptor Subtypes. II. Screen for Binding Activity at the D1 and D2 Dopamine Receptor Subtypes. Pharm. Biol. 41, 45–58. https://doi.org/10.1076/phbi.41.1.45.14695
Marcinkowska, M., Bucki, A., Panek, D., Siwek, A., Fajkis, N., Bednarski, M., Zygmunt, M., Godyń, J., Del Rio Valdivieso, A., Kotańska, M., Kołaczkowski, M., Więckowska, A., 2019. Anti‐Alzheimer’s multitarget‐directed ligands with serotonin 5‐HT 6 antagonist, butyrylcholinesterase inhibitory, and antioxidant activity. Arch. Pharm. (Weinheim). 352, 1900041. https://doi.org/10.1002/ardp.201900041
Marucci, G., Buccioni, M., Ben, D.D., Lambertucci, C., Volpini, R., Amenta, F., 2021. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology 190, 108352. https://doi.org/10.1016/j.neuropharm.2020.108352
McGuire, J.R., Bester, S.M., Guelta, M.A., Cheung, J., Langley, C., Winemiller, M.D., Bae, S.Y., Funk, V., Myslinski, J.M., Pegan, S.D., Height, J.J., 2021. Structural and Biochemical Insights into the Inhibition of Human Acetylcholinesterase by G-Series Nerve Agents and Subsequent Reactivation by HI-6. Chem. Res. Toxicol. 34, 804–816. https://doi.org/10.1021/acs.chemrestox.0c00406
Murray, A., Faraoni, M., Castro, M., Alza, N., Cavallaro, V., 2013. Natural AChE Inhibitors from Plants and their Contribution to Alzheimer’s Disease Therapy. Curr. Neuropharmacol. 11, 388–413. https://doi.org/10.2174/1570159X11311040004
Nisa, K., Nurhayati, S., Apriyana, W., Indrianingsih, A.W., 2017. Investigation of Total Phenolic and Flavonoid Contents, and Evaluation of Antimicrobial and Antioxidant Activities from Baeckea frutescens Extracts. IOP Conf. Ser. Earth Environ. Sci. 101, 012002. https://doi.org/10.1088/1755-1315/101/1/012002
Othman, E.M., Fayed, E.A., Husseiny, E.M., Abulkhair, H.S., 2022. Rationale design, synthesis, cytotoxicity evaluation, and in silico mechanistic studies of novel 1,2,3-triazoles with potential anticancer activity. New J. Chem. 46, 12206–12216. https://doi.org/10.1039/d2nj02061k
Piluzza, G., Bullitta, S., 2011. Correlations between phenolic content and antioxidant properties in twenty-four plant species of traditional ethnoveterinary use in the Mediterranean area. Pharm. Biol. 49, 240–247. https://doi.org/10.3109/13880209.2010.501083
Pires, D.E. V., Blundell, T.L., Ascher, D.B., 2015. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 58, 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
Prasher, V.P., 2004. Review of donepezil, rivastigmine, galantamine and memantine for the treatment of dementia in Alzheimer’s disease in adults with Down syndrome: implications for the intellectual disability population. Int. J. Geriatr. Psychiatry 19, 509–515. https://doi.org/10.1002/gps.1077
Prince, M., Ali, G.-C., Guerchet, M., Prina, A.M., Albanese, E., Wu, Y.-T., 2016. Recent global trends in the prevalence and incidence of dementia, and survival with dementia. Alzheimers. Res. Ther. 8, 23. https://doi.org/10.1186/s13195-016-0188-8
Rifaai, R.A., Mokhemer, S.A., Saber, E.A., El-Aleem, S.A.A., El-Tahawy, N.F.G., 2020. Neuroprotective effect of quercetin nanoparticles: A possible prophylactic and therapeutic role in alzheimer’s disease. J. Chem. Neuroanat. 107, 101795. https://doi.org/10.1016/j.jchemneu.2020.101795
Román, G.C., Jackson, R.E., Gadhia, R., Román, A.N., Reis, J., 2019. Mediterranean diet: The role of long-chain ω-3 fatty acids in fish; polyphenols in fruits, vegetables, cereals, coffee, tea, cacao and wine; probiotics and vitamins in prevention of stroke, age-related cognitive decline, and Alzheimer disease. Rev. Neurol. (Paris). 175, 724–741. https://doi.org/10.1016/j.neurol.2019.08.005
Sakina, M.Y., Ahmed, I.Y., 2018. Traditional medicinal plants used for the treatment of diabetes in the Sudan: A review. African J. Pharm. Pharmacol. 12, 27–40. https://doi.org/10.5897/AJPP2017.4878
Sawda, C., Moussa, C., Turner, R.S., 2017. Resveratrol for Alzheimer’s disease. Ann. N. Y. Acad. Sci. 1403, 142–149. https://doi.org/10.1111/nyas.13431
Sayyah, M., Boostani, H., Pakseresht, S., Malayeri, A., 2010. Comparison of Silybum marianum (L.) Gaertn. with fluoxetine in the treatment of Obsessive−Compulsive Disorder. Prog. Neuro-Psychopharmacology Biol. Psychiatry 34, 362–365. https://doi.org/10.1016/j.pnpbp.2009.12.016
Sedahmed, A.A., Al-Nour, M.Y., Mırghanı, M.H., Abu-Algasım, H.E., Eltieb, F.A., Ali, A.A., Elhadı, E., Arbab, A.H., 2021. Phytochemical, in Vivo, and in Silico Anticonvulsant Activity Screening of Albizia Amara Leave’s Ethanolic Extract. Hacettepe Univ. J. Fac. Pharm. 41, 09–22.
Shimada, K., Fujikawa, K., Yahara, K., Nakamura, T., 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40, 945–948. https://doi.org/10.1021/jf00018a005
Singh, E., Devasahayam, G., 2020. Neurodegeneration by oxidative stress: a review on prospective use of small molecules for neuroprotection. Mol. Biol. Rep. 47, 3133–3140. https://doi.org/10.1007/s11033-020-05354-1
Slot, R.E.R., Sikkes, S.A.M., Berkhof, J., Brodaty, H., Buckley, R., Cavedo, E., Dardiotis, E., Guillo‐Benarous, F., Hampel, H., Kochan, N.A., Lista, S., Luck, T., Maruff, P., Molinuevo, J.L., Kornhuber, J., Reisberg, B., Riedel‐Heller, S.G., Risacher, S.L., Roehr, S., Sachdev, P.S., Scarmeas, N., Scheltens, P., Shulman, M.B., Saykin, A.J., Verfaillie, S.C.J., Visser, P.J., Vos, S.J.B., Wagner, M., Wolfsgruber, S., Jessen, F., Flier, W.M., 2019. Subjective cognitive decline and rates of incident Alzheimer’s disease and non–Alzheimer’s disease dementia. Alzheimer’s Dement. 15, 465–476. https://doi.org/10.1016/j.jalz.2018.10.003
Stierand, K., Rarey, M., 2010. PoseView -- molecular interaction patterns at a glance. J. Cheminform. 2, P50. https://doi.org/10.1186/1758-2946-2-S1-P50
Thadhani, V.M., Choudhary, M.I., Ali, S., Omar, I., Siddique, H., Karunaratne, V., 2011. Antioxidant activity of some lichen metabolites. Nat. Prod. Res. 25, 1827–1837. https://doi.org/10.1080/14786419.2010.529546
The World Health Organization, 2022. Dementia [WWW Document]. URL https://www.who.int/news-room/fact-sheets/detail/dementia (accessed 12.20.22).
Turky, A., Bayoumi, A.H., Ghiaty, A., El-Azab, A.S., A.-M. Abdel-Aziz, A., Abulkhair, H.S., 2020a. Design, synthesis, and antitumor activity of novel compounds based on 1,2,4-triazolophthalazine scaffold: Apoptosis-inductive and PCAF-inhibitory effects. Bioorg. Chem. 101, 104019. https://doi.org/10.1016/j.bioorg.2020.104019
Turky, A., Sherbiny, F.F., Bayoumi, A.H., Ahmed, H.E.A., Abulkhair, H.S., 2020b. Novel 1,2,4-triazole derivatives: Design, synthesis, anticancer evaluation, molecular docking, and pharmacokinetic profiling studies. Arch. Pharm. (Weinheim). 353, 2000170. https://doi.org/10.1002/ardp.202000170
Venkateshappa, C., Harish, G., Mahadevan, A., Srinivas Bharath, M.M., Shankar, S.K., 2012. Elevated Oxidative Stress and Decreased Antioxidant Function in the Human Hippocampus and Frontal Cortex with Increasing Age: Implications for Neurodegeneration in Alzheimer’s Disease. Neurochem. Res. 37, 1601–1614. https://doi.org/10.1007/s11064-012-0755-8
Verma, S., Singh, S., 2008. Current and future status of herbal medicines. Vet. World 2, 347. https://doi.org/10.5455/vetworld.2008.347-350
Wong, F.-C., Yong, A.-L., Ting, E.P.-S., Khoo, S.-C., Ong, H.-C., Chai, T.-T., 2014. Antioxidant, Metal Chelating, Anti-glucosidase Activities and Phytochemical Analysis of Selected Tropical Medicinal Plants. Iran. J. Pharm. Res. IJPR 13, 1409–15.
Yan, Y., Yang, H., Xie, Y., Ding, Y., Kong, D., Yu, H., 2020. Research Progress on Alzheimer’s Disease and Resveratrol. Neurochem. Res. 45, 989–1006. https://doi.org/10.1007/s11064-020-03007-0
Yuan, H., Ma, Q., Ye, L., Piao, G., 2016. The Traditional Medicine and Modern Medicine from Natural Products. Molecules 21, 559. https://doi.org/10.3390/molecules21050559
Zaki, A.A., Al-Karmalawy, A.A., El-Amier, Y.A., Ashour, A., 2020. Molecular docking reveals the potential of Cleome amblyocarpa isolated compounds to inhibit COVID-19 virus main protease. New J. Chem. 44, 16752–16758. https://doi.org/10.1039/D0NJ03611K
Zaki, A.A., Kaddah, M.M.Y., Abulkhair, H.S., Ashour, A., 2022. Unravelling the antifungal and antiprotozoal activities and LC-MS/MS quantification of steroidal saponins isolated from Panicum turgidum. RSC Adv. 12, 2980–2991. https://doi.org/10.1039/D1RA08532H
Zheleva-Dimitrova, D., Gevrenova, R., Zaharieva, M.M., Najdenski, H., Ruseva, S., Lozanov, V., Balabanova, V., Yagi, S., Momekov, G., Mitev, V., 2017. HPLC-UV and LC-MS Analyses of Acylquinic Acids in Geigeria alata (DC) Oliv. & Hiern. and their Contribution to Antioxidant and Antimicrobial Capacity. Phytochem. Anal. 28, 176–184. https://doi.org/10.1002/pca.2658
Published
2023-12-15
How to Cite
Osman, W., Maaz, M. A., Ali, A., Eltayeb Fadul, Ahmed H. Arbab, Mosab Yahya Al-Nour, Ahmed Ashour, Asmaa E. Sherif, Hamada S. Abulkhair, Ibrahim, S. R., Kholoud F. Ghazawi, Gamal A. Mohamed, & Mona S. Mohamed. (2023). Geigeria Alata- a Potential Source for Anti-Alzheimer’s Constituents: In Vitro and Computational Investigations . Indonesian Journal of Pharmacy, 34(4), 603-616. https://doi.org/10.22146/ijp.7967
Section
Research Article