Vitamin D3 and the Molecular Pathway of Skin Aging

  • Adeltrudis Adelsa Danimayostu Department of Pharmaceutics, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, D. I. Yogyakarta 55281, Indonesia/Department of Pharmacy, Faculty of Medicine, Universitas Brawijaya, Jalan Veteran, Malang, 65145, Indonesia
  • Ronny Martien Department of Pharmaceutics, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, D. I. Yogyakarta 55281, Indonesia
  • Endang Lukitaningsih Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, D. I. Yogyakarta 55281, Indonesia
  • Retno Danarti Department of Dermatology and Venereology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/ Dr. Sardjito Hospital. Gedung Radiopoetro Lantai 3, Jalan Farmako Sekip Utara Yogyakarta 55281, Indonesia.
Keywords: elasticity, collagen, matrix metalloproteinases, skin aging, vitamin D3

Abstract

Many women pay attention to skin aging. Signs of aging such as lines, wrinkles, dry skin, hyperpigmentation, and loss of elasticity affect skin appearance and self-confidence. Age, lifestyle, and particularly UV irradiation stimulate reactive oxygen species (ROS) production. ROS induces the breakdown of collagen through matrix metalloproteinases (MMPs). Collagen and elastin play a pivotal role in skin aging. They maintain skin integrity, strength, and resiliency. Antioxidant and keratolytic agents are often used in anti-aging products, including several vitamins such as vitamin A, B, C and E. To date, several studies have been reported in the literature for the effects of vitamin D on collagen synthesis and MMPs inhibition. This review focuses on identifying and assessing the molecular pathways of vitamin D effects related to skin aging. The literature was collected from Google Scholar, Elsevier, Science Direct, PubMed, and Scopus databases and accessed between January 2019 and May 2022. The literature screening was conducted using keywords like “vitamin D3”, “collagen”, “matrix metalloproteinases”, “skin aging” and related to the study topic were included. The effect of vitamin D3 on MMPs inhibition (particularly on MMP-1, MMP-3, and MMP-9) has been widely published. Several studies have reported that vitamin D increases collagen synthesis and clinically improves skin elasticity. However, there have been controversial results regarding how vitamin D3 affects transforming growth factor-β (TGF-β) correlated with skin elasticity by the molecular pathway. Therefore, it can be concluded that vitamin D3 is a potential alternative agent in improving skin aging.

References

Al Mheid, I., & Quyyumi, A. A. (2017). Vitamin D and Cardiovascular Disease: Controversy Unresolved. Journal of the American College of Cardiology, 70(1), 89–100. https://doi.org/10.1016/j.jacc.2017.05.031
Antal, A. S., Dombrowski, Y., Koglin, S., Ruzicka, T., & Schauber, J. (2011). Impact of vitamin D3 on cutaneous immunity and antimicrobial peptide expression. Dermato-Endocrinology, 3(1), 18–22. https://doi.org/10.4161/derm.3.1.14616
Avila Rodríguez, M. I., Rodríguez Barroso, L. G., & Sánchez, M. L. (2018). Collagen: A review on its sources and potential cosmetic applications. Journal of Cosmetic Dermatology, 17(1), 20–26. https://doi.org/10.1111/jocd.12450
Azimzadeha, M., Shidfarc, F., Jazayeri, S., Hosseini, A., & Ranjbaran, F. (2020). Effect of vitamin D supplementation on klotho protein, antioxidant status and nitric oxide in the elderly: A randomized, double-blinded, placebocontrolled clinical trial. European Journal of Integrative Medicine, 20, 101089.
Bahar-Shany, K., Ravid, A., & Koren, R. (2010). Upregulation of MMP-9 production by TNFα in keratinocytes and its attenuation by vitamin D. Journal of Cellular Physiology, 222(3), 729–737. https://doi.org/10.1002/jcp.22004
Bakhshalizadeh, S., Amidi, F., Alleyassin, A., Soleimani, M., Shirazi, R., & Shabani Nashtaei, M. (2017). Modulation of steroidogenesis by vitamin D3 in granulosa cells of the mouse model of polycystic ovarian syndrome. Systems Biology in Reproductive Medicine, 63(3), 150–161. https://doi.org/10.1080/19396368.2017.1296046
Bakhshalizadeh, S., Amidi, F., Shirazi, R., & Shabani Nashtaei, M. (2018). Vitamin D3 regulates steroidogenesis in granulosa cells through AMP-activated protein kinase (AMPK) activation in a mouse model of polycystic ovary syndrome. Cell Biochemistry and Function, 36(4), 183–193. https://doi.org/10.1002/cbf.3330
Bikle, D. D. (2012). Protective actions of vitamin D in UVB induced skin cancer. Photochemistry and Photobiology Science, 11(12), 1808–1816. https://doi.org/10.1039/c2pp25251a
Bikle, D. D. (2014). Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol., 21(3), 319–329.
Bikle, D. D. (2016). Extraskeletal actions of vitamin D. Ann N Y Acad Sci., 1376(1), 29–52.
Bikle, D. D., Xie, Z., & Tu, C. L. (2012). Calcium regulation of keratinocyte differentiation. Expert Rev Endocrinol Metab., 7(4), 461–472.
Bikle, Daniel D. (2012). Vitamin D and the skin: Physiology and pathophysiology. Rev Endocr Metab Disord, 13(1), 3–19.
Bocheva, G., Slominski, R. M., & Slominski, A. T. (2021). The impact of vitamin d on skin aging. International Journal of Molecular Sciences, 22(16), 1–18. https://doi.org/10.3390/ijms22169097
Brown, E. M. (2013). Role of the calcium-sensing receptor in extracellular calcium homeostasis. Best Practice and Research: Clinical Endocrinology and Metabolism, 27(3), 333–343. https://doi.org/10.1016/j.beem.2013.02.006
Cao, C., Xiao, Z., Wu, Y., & Ge, C. (2020). Diet and skin aging—from the perspective of food nutrition. Nutrients, 12(3), 1–25. https://doi.org/10.3390/nu12030870
Caraffa, A., Spinas, E., Kritas, S. K., Lessiani, G., Ronconi, G., Saggini, A., Antinolfi, P., Pizzicannella, J., Toniato, E., Theoharides, T. C., & Conti, P. (2016). Endocrinology of the skin: intradermal neuroimmune network, a new frontier. Journal of Biological Regulators and Homeostatic Agents, 30(2), 339–343. https://doi.org/10.6084/M9.FIGSHARE.3860166
Chang, S. W., & Lee, H. C. (2019). Vitamin D and health - The missing vitamin in humans. Pediatrics and Neonatology, 60(3), 237–244. https://doi.org/10.1016/j.pedneo.2019.04.007
Cho, Y., Seo, C., Joo, S., Song, J., Cha, E., & Ohn, S. (2019). The association between postburn vitamin D deficiency and the biomechanical properties of hypertrophic scars. J Burn Care Res, 40(3), 274–280. https://doi.org/10.1093/jbcr/irz028
Combs Jr, G. F. (2008). Chapter 6: Vitamin D. In The Vitamins. Fundamental Aspects in Nutrition and Health (Third, pp. 145–175). Elsevier Inc.
Corduk, N., Abban, G., Yildirim, B., & Sarioglu-Buke, A. (2012). The effect of vitamin D on expression of TGF β1 in ovary. Experimental and Clinical Endocrinology and Diabetes, 120(8), 490–493. https://doi.org/10.1055/s-0032-1314858
Crew, K. D. (2013). Vitamin D: Are We Ready to Supplement for Breast Cancer Prevention and Treatment? ISRN Oncology, 2013, 1–22. https://doi.org/10.1155/2013/483687
De Araújo, R., Lôbo, M., Trindade, K., Silva, D. F., & Pereira, N. (2019). Fibroblast Growth Factors: A Controlling Mechanism of Skin Aging. Skin Pharmacology and Physiology, 32(5), 275–282. https://doi.org/10.1159/000501145
Díaz-Soto, G., Rocher, A., García-Rodríguez, C., Núñez, L., & Villalobos, C. (2016). Chapter Seven - The Calcium-Sensing Receptor in Health and Disease. In W. Kwang & L. Galluzzi (Eds.), International Review of Cell and Molecular Biology (Vol. 327). Academic Press. https://doi.org/10.1016/bs.ircmb.2016.05.004
Ding, J., Kwan, P., Ma, Z., Iwashina, T., Wang, J., Shankowsky, H. A., & Tredget, E. E. (2016). Synergistic effect of vitamin D and low concentration of transforming growth factor beta 1, a potential role in dermal wound healing. Burns, 42(6), 1277–1286. https://doi.org/10.1016/j.burns.2016.03.009
Dixon, K. M., Tongkao-On, W., Sequeira, V. B., Carter, S. E., Song, E. J., Rybchyn, M. S., Gordon-Thomson, C., & Mason, R. S. (2013). Vitamin D and death by sunshine. International Journal of Molecular Sciences, 14(1), 1964–1977. https://doi.org/10.3390/ijms14011964
Dobak, J., Grzybowski, J., Liu, F. T., Landon, B., & Dobke, M. (1994). 1,25-Dihydroxyvitamin D3 increases collagen production in dermal fibroblasts. Journal of Dermatological Science, 8(1), 18–24. https://doi.org/10.1016/0923-1811(94)90316-6
Farage, M., Miller, K., Zouboulis, C., Pierard, G., & Maibach, H. (2012). Gender Differences in Skin Aging and the Changing Profile of the Sex Hormones with Age. Journal of Steroids & Hormonal Science, 03(02). https://doi.org/10.4172/2157-7536.1000109
Ferrari, R. (2015). Writing narrative style literature reviews. Medical Writing, 24(4), 230–235. https://doi.org/10.1179/2047480615z.000000000329
Fischer, K. D., & Agrawal, D. K. (2014). Vitamin D regulating TGF-β induced epithelial-mesenchymal transition. In Respiratory Research (Vol. 15, Issue 1). https://doi.org/10.1186/s12931-014-0146-6
Franco, A. C., Aveleira, C., & Cavadas, C. (2022). Skin senescence: mechanisms and impact on whole-body aging. Trends in Molecular Medicine, 28(2), 97–109. https://doi.org/10.1016/j.molmed.2021.12.003
Fujimura, T., Moriwaki, S., Takema, Y., & Imokawa, G. (2000). Epidermal change can alter mechanical properties of hairless mouse skin topically treated with 1α, 25-dihydroxyvitamin D3. Journal of Dermatological Science, 24(2), 105–111. https://doi.org/10.1016/S0923-1811(00)00090-6
Fujisaki, H., Futaki, S., Yamada, M., Sekiguchi, K., Hayashi, T., Ikejima, T., & Hattori, S. (2018). Respective optimal calcium concentrations for proliferation on type I collagen fibrils in two keratinocyte line cells, HaCaT and FEPE1L-8. Regenerative Therapy, 8, 73–79. https://doi.org/10.1016/j.reth.2018.04.001
Gangula, P., Dong, Y. L., Al-Hendy, A., Richard-Davis, G., Valerie, M. R., Haddad, G., Millis, R., Nicholas, S. B., & Moseberry, D. (2013). Protective cardiovascular and renal actions of vitamin D and estrogen. Frontiers in Bioscience - Scholar, 5 S(1), 134–148. https://doi.org/10.2741/s362
Gil, Á., Plaza-Diaz, J., & Mesa, M. D. (2018). Vitamin D: Classic and Novel Actions. Annals of Nutrition and Metabolism, 72(2), 87–95. https://doi.org/10.1159/000486536
Gkogkolou, P., & Böhm, M. (2012). Advanced glycation end products: Keyplayers in skin aging? Dermato-Endocrinology, 4(3), 259–270. https://doi.org/10.4161/derm.22028
Gragnani, A., Cornick, S. Mac, Chominski, V., Ribeiro de Noronha, S. M., Alves Corrêa de Noronha, S. A., & Ferreira, L. M. (2014). Review of Major Theories of Skin Aging. Advances in Aging Research, 03(04), 265–284. https://doi.org/10.4236/aar.2014.34036
Greenhalgh, T., Thorne, S., & Malterud, K. (2018). Time to challenge the spurious hierarchy of systematic over narrative reviews? European Journal of Clinical Investigation, 48(6), 1–6. https://doi.org/10.1111/eci.12931
Halder, S. K., Osteen, K. G., & Al-Hendy, A. (2013). Vitamin D3 inhibits expression and activities of matrix metalloproteinase-2 and -9 in human uterine fibroid cells. Human Reproduction, 28(9), 2407–2416. https://doi.org/10.1093/humrep/det265
Hasan, N., Sonnenschein, C., & Soto, A. M. (2019). Vitamin D3 constrains estrogen’s effects and influences mammary epithelial organization in 3D cultures. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-43308-1
Hemida, M. A., AbdElmoneim, N. A., Hewala, T. I., Rashad, M. M., & Abdaallah, S. (2019). Vitamin D Receptor in Breast Cancer Tissues and Its Relation to Estrogen Receptor Alpha (ER-α) Gene Expression and Serum 25-hydroxyvitamin D Levels in Egyptian Breast Cancer Patients: A Case-control Study. Clinical Breast Cancer, 19(3), e407–e414. https://doi.org/10.1016/j.clbc.2018.12.019
Hong, S. H., Lee, J. E., An, S. M., Shin, Y. Y., Hwang, D. Y., Yang, S. Y., Cho, S. K., & An, B. S. (2017). Effect of vitamin d3 on biosynthesis of estrogen in porcine granulosa cells via modulation of steroidogenic enzymes. Toxicological Research, 33(1), 49–54. https://doi.org/10.5487/TR.2017.33.1.049
Kammeyer, A., & Luiten, R. M. (2015). Oxidation events and skin aging. Ageing Research Reviews, 21, 16–29. https://doi.org/10.1016/j.arr.2015.01.001
Kheirouri, S., & Alizadeh, M. (2020). Vitamin D and advanced glycation end products and their receptors. Pharmacological Research, 158(May), 104879. https://doi.org/10.1016/j.phrs.2020.104879
Kilmister, E. J., Paterson, C., Brasch, H. D., Davis, P. F., & Tan, S. T. (2019). The Role of the Renin-Angiotensin System and Vitamin D in Keloid Disorder—A Review. Frontiers in Surgery, 6(November), 1–12. https://doi.org/10.3389/fsurg.2019.00067
Kim, M., & Park, H. (2016). Molecular Mechanism of Skin Aging and Rejuvenation. In N. Shiomi (Ed.), Molecular Mechanisms of the Aging Process and Rejuvenation. IntechOpen.
Kim, S. H., Baek, M. S., Yoon, D. S., Park, J. S., Yoon, B. W., Oh, B. S., Park, J., & Kim, H. J. (2014). Vitamin D inhibits expression and activity of matrix metalloproteinase in human lung fibroblasts (HFL-1) cells. Tuberculosis and Respiratory Diseases, 77(2), 73–80. https://doi.org/10.4046/trd.2014.77.2.73
Kinuta, K., Tanaka, H., Moriwake, T., Aya, K., Kato, S., & Seino, Y. (2000). Vitamin D is an important factor in estrogen biosynthesis of both female and male gonads. Endocrinology, 141(4), 1317–1324. https://doi.org/10.1210/endo.141.4.7403
Kocic, H., Damiani, G., Stamenkovic, B., Tirant, M., Jovic, A., Tiodorovic, D., & Peris, K. (2019). Dietary compounds as potential modulators of microRNA expression in psoriasis. Therapeutic Advances in Chronic Disease, 10, 1–13. https://doi.org/10.1177/2040622319864805
Krishnan, A. V., Swani, S., & Feldman, D. (2012). The Potential Therapeutic Benefits of Vitamin D in the Treatment of Estrogen Receptor Positive Breast Cancer. Steroids, 77(11), 1107–1112.
Kwon, K. R., Alam, M. B., Park, J. H., Kim, T. H., & Lee, S. H. (2019). Attenuation of UVB-induced photo-aging by polyphenolic-rich spatholobus suberectus stem extract via modulation of MAPK/AP-1/MMPs signaling in human keratinocytes. Nutrients, 11(6). https://doi.org/10.3390/nu11061341
Lago, J. C., & Puzzi, M. B. (2019). The effect of aging in primary human dermal fibroblasts. PLoS ONE, 14(7), 1–14. https://doi.org/10.1371/journal.pone.0219165
Lee, D. E., Trowbridge, R. M., Ayoub, N. T., & Agrawal, D. K. (2015). High-mobility group box protein-1, matrix metalloproteinases, and Vitamin D in keloids and hypertrophic scars. Plastic and Reconstructive Surgery - Global Open, 3(6), 1–9. https://doi.org/10.1097/GOX.0000000000000391
Lee, S. A., Yang, H. W., Um, J. Y., Shin, J. M., Park, I. H., & Lee, H. M. (2017). Vitamin D attenuates myofibroblast differentiation and extracellular matrix accumulation in nasal polyp-derived fibroblasts through smad2/3 signaling pathway. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-07561-6
Liu, Z., Li, Y., Song, H., He, J., Li, G., Zheng, Y., & Li, B. (2019). Collagen peptides promote photoaging skin cell repair by activating the TGF-β/Smad pathway and depressing collagen degradation. Food and Function, 10(9), 6121–6134. https://doi.org/10.1039/c9fo00610a
Ma, D., & Peng, L. (2019). Vitamin D and pulmonary fibrosis: a review of molecular mechanisms. International Journal of Clinical and Experimental Pathology, 12(9), 3171–3178. http://www.ncbi.nlm.nih.gov/pubmed/31934161%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6949840
Meredith, A., Boroomand, S., Carthy, J., Luo, Z., & McManus, B. (2015). 1,25 dihydroxyvitamin D3 inhibits TGFβ1-mediated primary human cardiac myofibroblast activation. In PLoS ONE (Vol. 10, Issue 6). https://doi.org/10.1371/journal.pone.0128655
Meza-Meza, M. R., Ruiz-Ballesteros, A. I., & de la Cruz-Mosso, U. (2020). Functional effects of vitamin D: From nutrient to immunomodulator. Critical Reviews in Food Science and Nutrition, 62(11), 3042–3062. https://doi.org/10.1080/10408398.2020.1862753
Mostafa, W. Z., & Hegazy, R. A. (2015). Vitamin D and the skin: Focus on a complex relationship: A review. J Adv Res, 6(6), 793–804.
Muzumdar, S., & Ferenczi, K. (2021). Nutrition and youthful skin. Clinics in Dermatology, 39(5), 796–808. https://doi.org/10.1016/j.clindermatol.2021.05.007
Nair, R., & Maseeh, A. (2012). Vitamin D: The “sunshine” vitamin. Journal of Pharmacology and Pharmacotherapeutics, 3(2), 118–127.
Philips, N., Auler, S., Hugo, R., & Gonzalez, S. (2011). Beneficial regulation of matrix metalloproteinases for skin health. Enzyme Research, 2011(1). https://doi.org/10.4061/2011/427285
Philips, N., Ding, X., Kandalai, P., Marte, I., Krawczyk, H., & Richardson, R. (2019). The Beneficial Regulation of Extracellular Matrix and Heat Shock Proteins, and the Inhibition of Cellular Oxidative Stress E ects and Inflammatory Cytokines by 1α,25 dihydroxyvitaminD3 in Non-Irradiated and Ultraviolet Radiated Dermal Fibroblasts. Cosmetics, 6(46), 1–15. https://doi.org/10.3390/cosmetics6030046
Pike, J. W., & Meyer, M. B. (2012). The Vitamin D Receptor: New Paradigms for the Regulation of Gene Expression by 1,25-Dihydroxyvitamin D 3. Rheumatic Disease Clinics of North America, 38(1), 13–27. https://doi.org/10.1016/j.rdc.2012.03.004
Pittayapruek, P., Meephansan, J., Prapapan, O., Komine, M., & Ohtsuki, M. (2016). Role of matrix metalloproteinases in Photoaging and photocarcinogenesis. International Journal of Molecular Sciences, 17(6). https://doi.org/10.3390/ijms17060868
Qian, Z., Lenardo, M. J., & Baltimore, D. (2017). 30 Years of NF-κB: A Blossoming of Relevance to Human Pathobiology. Cell, 168(1–2), 37–57. https://doi.org/10.1016/j.cell.2016.12.012
Quan, T., & Fisher, G. J. (2015). Role of age-associated alterations of the dermal extracellular matrix microenvironment in human skin aging: A mini-review. Gerontology, 61(5), 427–434. https://doi.org/10.1159/000371708
Rahrovan, S., Fanian, F., Mehryan, P., Humbert, P., & Firooz, A. (2018). Male versus female skin: What dermatologists and cosmeticians should know. International Journal of Women’s Dermatology, 4(3), 122–130. https://doi.org/10.1016/j.ijwd.2018.03.002
Ramos-e-Silva, M., Celem, L. R., Ramos-e-Silva, S., & Fucci-da-Costa, A. P. (2013). Anti-aging cosmetics: Facts and controversies. Clinics in Dermatology, 31(6), 750–758. https://doi.org/10.1016/j.clindermatol.2013.05.013
Reddy, K. K., & Gilchrest, B. A. (2011). The molecular basis of cutaneous aging. Expert Review of Dermatology, 6(5), 525–536. https://doi.org/10.1586/edm.11.48
Regan, J. C., & Partridge, L. (2013). Gender and longevity: Why do men die earlier than women? Comparative and experimental evidence. Best Practice and Research: Clinical Endocrinology and Metabolism, 27(4), 467–479. https://doi.org/10.1016/j.beem.2013.05.016
Reilly, D. M., & Lozano, J. (2021). Skin collagen through the lifestages: importance for skin health and beauty. Plastic and Aesthetic Research, 2021. https://doi.org/10.20517/2347-9264.2020.153
Shin, H. M., Lee, Y., Kima, M.-K., Dong, H. L., & Jin, H. C. (2019). UV increases skin-derived 1α,25-dihydroxyvitamin D3 production, leading to MMP-1 expression by altering the balance of vitamin D and cholesterol synthesis from 7-dehydrocholesterol. Journal of Steroid Biochemistry and Molecular Biology, 195, 1–10. https://doi.org/10.1016/j.jsbmb.2019.105449
Shin, J. W., Kwon, S. H., Choi, J. Y., Na, J. I., Huh, C. H., Choi, H. R., & Park, K. C. (2019). Molecular mechanisms of dermal aging and antiaging approaches. International Journal of Molecular Sciences, 20(9). https://doi.org/10.3390/ijms20092126
Stojiljković, D., Pavlović, D., & Arsić, I. (2014). Oxidative stress, skin aging and antioxidant therapy. Acta Facultatis Medicae Naissensis, 31(4), 207–217. https://doi.org/10.2478/afmnai-2014-0026
Swami, S., Krishnan, A. V., Peng, L., Lundqvist, J., & Feldman, D. (2013). Transrepression of the estrogen receptor promoter by calcitriol in human breast cancer cells via two negative vitamin D response elements. Endocrine-Related Cancer, 20(4), 565–577. https://doi.org/10.1530/ERC-12-0281
Tobin, D. J. (2017). Introduction to skin aging. Journal of Tissue Viability, 26(1), 37–46. https://doi.org/10.1016/j.jtv.2016.03.002
Umar, M., Sastry, K. S., Al Ali, F., Al-Khulaifi, M., Wang, E., & Chouchane, A. I. (2018). Vitamin D and the Pathophysiology of Inflammatory Skin Diseases. Skin Pharmacology and Physiology, 31(2), 74–86. https://doi.org/10.1159/000485132
Usategui, A., Criado, G., Del Rey, M. J., Faré, R., & Pablos, J. L. (2014). Topical vitamin D analogue calcipotriol reduces skin fibrosis in experimental scleroderma. Archives of Dermatological Research, 306(8), 757–761. https://doi.org/10.1007/s00403-014-1466-6
Van Doren, S. R. (2015). Matrix metalloproteinase interactions with collagen and elastin. Matrix Biol, 0, 224–231. https://doi.org/10.1016/j.matbio.2015.01.005
Wang, L. F., Tai, C. F., Chien, C. Y., Chiang, F. Y., & Chen, J. Y. F. (2015). Vitamin D decreases the secretion of matrix metalloproteinase-2 and matrix metalloproteinase-9 in fibroblasts derived from Taiwanese patients with chronic rhinosinusitis with nasal polyposis. Kaohsiung Journal of Medical Sciences, 31(5), 235–240. https://doi.org/10.1016/j.kjms.2015.02.001
Weikum, E. R., Liu, X., & Ortlund, E. A. (2018). The nuclear receptor superfamily: A structural perspective. Protein Science, 27(11), 1876–1892. https://doi.org/10.1002/pro.3496
Zhang, S., & Duan, E. (2018). Fighting against Skin Aging: The Way from Bench to Bedside. Cell Transplantation, 27(5), 729–738. https://doi.org/10.1177/0963689717725755
Published
2023-09-04
How to Cite
Danimayostu, A. A., Martien, R., Lukitaningsih, E., & Danarti, R. (2023). Vitamin D3 and the Molecular Pathway of Skin Aging. Indonesian Journal of Pharmacy, 34(3), 357–371. https://doi.org/10.22146/ijp.4929
Section
Review Article