The Effectiveness of Tempuyung Leaves' Water Fraction for Inflammation Prevention of Wistar Rats in an Acute Gout Arthritis Model

  • Nita Parisa Universitas Sriwijaya
  • Muhammad Totong Kamaluddin
  • Muhammad Irsan Saleh
  • Ernawati Sinaga
  • Radiyati Umi Partan
  • Irfannuddin
  • Sonlimar Mangunsong
Keywords: gout, prevention, tempuyung leaf

Abstract

Gouty arthritis is inflammation of the joints that occurs in conditions of chronic hyperuricemia resulting in the deposition of monosodium urate crystals. The management of gout arthritis will emphasize both the acute and chronic phase and the initial drug options for gouty arthritis are non-steroidal anti-inflammatory drugs (NSAIDs), corticosteroids, and colchicine. However, administering chemical drugs can cause various risks and side effects, so alternative treatments are needed, one of which is using herbal medicine.  Tempuyung (Sonchus arvensis) is a plant that is often found and easily cultivated in Indonesia, the water fraction of tempuyung leaves contains flavonoids, which can inhibit the pathogenesis of gout arthritis Therefore, this study examined the role of tempuyung (Sonchus arvensis) in preventing gouty arthritis by analyzing the effectiveness of tempuyung leaf fractions in inhibiting the inflammatory cascade. Both the quantitative and qualitative research were done. This research was carried out from March to December 2023 in the Animal House Laboratory, Basic Medical Chemistry, Medical Biotechnology, Faculty of Medicine, Sriwijaya University, Palembang, Special Laboratory for Anatomical Pathology, Barokah Palembang, Integrated Research and Testing Laboratory, Gadjah Mada University, Yogyakarta, and PT Laboratory. Garuda Malang Wing Mission. This research is an experimental study using experimental animals (in vivo) with a post-test control group design. Just as well as colchicine, the water component of tempuyung leaves can reduce inflammation in gouty arthritis. It is desired that more research on the toxicity test of tempuyung leaf water fractions can be conducted in the future to ascertain the safety of these fractions.

References

Alkadi, H., Khubeiz, M. J., & Jbeily, R. (2018). Colchicine: A Review on Chemical Structure and Clinical Usage. Infectious disorders drug targets, 18(2), 105–121. https://doi.org/10.2174/1871526517666171017114901
Al-Khayri, J. M., Sahana, G. R., Nagella, P., Joseph, B. V., Alessa, F. M., & Al-Mssallem, M. Q. (2022). Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Molecules (Basel, Switzerland), 27(9), 2901. https://doi.org/10.3390/molecules27092901
Alla H.I.A., Taie H.A.A., Elmotaleb M.M.A. Comparative Phytochemical and Biological Investigation of Five Glycine Max (L.) Merrill Genotypes. Asian Journal of Pharmaceutical and Clinical Research. 2019;12(2):523–34.
Aung, T., Myung, G., & FitzGerald, J. D. (2017). Treatment approaches and adherence to urate-lowering therapy for patients with gout. Patient preference and adherence, 11, 795–800. https://doi.org/10.2147/PPA.S97927.
Bonaventura, A., Vecchié, A., Dagna, L., Tangianu, F., Abbate, A., & Dentali, F. (2022). Colchicine for covid-19: Targeting NLRP3 inflammasome to Blunt hyperinflammation. Inflammation Research, 71(3), 293–307. https://doi.org/10.1007/s00011-022-01540-y
Cai, T., & Cai, B. (2023). Pharmacological activities of esculin and esculetin: A review. Medicine, 102(40), e35306. https://doi.org/10.1097/MD.0000000000035306
Chen, Y., Ma, H., Du, Y., Dong, J., Jin, C., Tan, L., & Wei, R. (2021). Functions of 1,25-dihydroxy vitamin D3, vitamin D3 receptor and interleukin-22 involved in pathogenesis of gout arthritis through altering metabolic pattern and inflammatory responses. PeerJ, 9, e12585. https://doi.org/10.7717/peerj.12585
Dehlin, M., Jacobsson, L., & Roddy, E. (2020). Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors. Nature reviews. Rheumatology, 16(7), 380–390. https://doi.org/10.1038/s41584-020-0441-1
Dionisio, K. L., Phillips, K., Price, P. S., Grulke, C. M., Williams, A., Biryol, D., Hong, T., & Isaacs, K. K. (2018). The Chemical and Products Database, a resource for exposure-relevant data on chemicals in consumer products. Scientific data, 5, 180125. https://doi.org/10.1038/sdata.2018.125
Garg, S. S., Gupta, J., Sahu, D., & Liu, C. J. (2022). Pharmacological and Therapeutic Applications of Esculetin. International journal of molecular sciences, 23(20), 12643. https://doi.org/10.3390/ijms232012643
Gilbert, J. R., McCaskill, D., Fishman, V. N., Brzak, K., Markham, D., Bartels, M. J., Winniford, B., Bano Mohsin, S., Godbey, J., Akinbo, O., & Lewer, P. (2013). Industrial applications of high-resolution GC/MS. Advanced Techniques in Gas Chromatography–Mass Spectrometry (GC–MS–MS and GC–TOF–MS) for Environmental Chemistry, 403–429. https://doi.org/10.1016/b978-0-444-62623-3.00017-4
Gürkan, A., Oğuz, M. M., Boduroğlu Cengiz, E., & Şenel, S. (2018). Dermatologic Manifestations of Colchicine Intoxication. Pediatric emergency care, 34(7), e131–e133. https://doi.org/10.1097/PEC.0000000000001530
Hasan F, A. Aziz S, Melati M. Perbedaan Waktu Panen Daun terhadap Produksi dan Kadar Flavonoid Tempuyung (Sonchus arvensis). Jurnal Hortikultura Indonesia. 2017;8(2):136–45.
Harahap N.I. Skrining Dan Karakterisasi Simplisia Daun Tempuyung (Sonchus Arvensis.L) Imelda Pekerja Indonesia. JIFI (Jurnal Ilmiah Farmasi Imelda). 2020;3(2):2655–3147.
Jayakumar S, Saraswathi I, Vijayakumar, Vijayaraghavan. Phytochemical Analysis Of Methanolic Extract Of Seeds Of Mucuna Pruriens By Gas Chromatography Mass Spectrometry. IJPSR. 2017;8(7):2916–21.
Kang, E. H., Park, E. H., Shin, A., Song, J. S., & Kim, S. C. (2021). Cardiovascular risk associated with allopurinol vs. benzbromarone in patients with gout. European heart journal, 42(44), 4578–4588. https://doi.org/10.1093/eurheartj/ehab619
Katno, Widiyastuti Y. (2012) Analisis Kualitatif Kandungan Kimia Kalus Sonchus arvensis Hasil Pertumbuhan Secara Kultur Jaringan, Media of Health Research and Development. 14(1),37–40.
Khanna, D., Khanna, P. P., Fitzgerald, J. D., Singh, M. K., Bae, S., Neogi, T., Pillinger, M. H., Merill, J., Lee, S., Prakash, S., Kaldas, M., Gogia, M., Perez-Ruiz, F., Taylor, W., Lioté, F., Choi, H., Singh, J. A., Dalbeth, N., Kaplan, S., Niyyar, V., … American College of Rheumatology (2012). 2012 American College of Rheumatology guidelines for management of gout. Part 2: therapy and antiinflammatory prophylaxis of acute gouty arthritis. Arthritis care & research, 64(10), 1447–1461. https://doi.org/10.1002/acr.21773
Khuluk, R. H., Yunita, A., Rohaeti, E., Syafitri, U. D., Linda, R., Lim, L. W., Takeuchi, T., & Rafi, M. (2021). An HPLC-dad method to quantify flavonoids in Sonchus arvensis and able to classify the plant parts and their geographical area through principal component analysis. MDPI. https://doi.org/10.3390/separations8020012
Kwak, J. H., Kim, Y., Staatz, C. E., & Baek, I. H. (2021). Oral bioavailability and pharmacokinetics of esculetin following intravenous and oral administration in rats. Xenobiotica; the fate of foreign compounds in biological systems, 51(7), 811–817. https://doi.org/10.1080/00498254.2021.1925774
Lee, Y. K., Lee, H., Kim, Y. N., Kang, J., Jeong, E. J., & Rho, J. R. (2023). Sesquiterpene Lactones with Anti-Inflammatory Activity from the Halophyte Sonchus brachyotus DC. Molecules (Basel, Switzerland), 28(4), 1518. https://doi.org/10.3390/molecules28041518
Li, Y., Wang, P., Yang, X., Wang, W., Zhang, J., He, Y., Zhang, W., Jing, T., Wang, B., & Lin, R. (2016). SIRT1 inhibits inflammatory response partly through regulation of NLRP3 inflammasome in vascular endothelial cells. Molecular immunology, 77, 148–156. https://doi.org/10.1016/j.molimm.2016.07.018
Liang, Y., Zhou, H. F., Tong, M., Chen, L., Ren, K., & Zhao, G. J. (2019). Colchicine inhibits endothelial inflammation via NLRP3/CRP pathway. International journal of cardiology, 294, 55. https://doi.org/10.1016/j.ijcard.2019.06.070
Liu, W., Zhang, L., Xu, H. J., Li, Y., Hu, C. M., Yang, J. Y., & Sun, M. Y. (2018). The Anti-Inflammatory Effects of Vitamin D in Tumorigenesis. International journal of molecular sciences, 19(9), 2736. https://doi.org/10.3390/ijms19092736
Manurung, H., Susanto, D., Kusumawati, E., Aryani, R., Nugroho, R. A., Kusuma, R., Rahmawati, Z., & Sari, R. D. (2022). Phytochemical, GC-MS analysis and antioxidant activities of leaf methanolic extract of Lai (Durio kutejensis), the endemic plant of Kalimantan, Indonesia. Biodiversitas, 23(11). https://doi.org/10.13057/biodiv/d231104
Mohammed, H. (2020). Phytochemistry and pharmacological effects of plants in genus Sonchus (asteraceae). Records of Pharmaceutical and Biomedical Sciences, 4(1), 40–50. https://doi.org/10.21608/rpbs.2019.18952.1046
Nuki G. (2008). Colchicine: its mechanism of action and efficacy in crystal-induced inflammation. Current rheumatology reports, 10(3), 218–227. https://doi.org/10.1007/s11926-008-0036-3
Otani, K., Watanabe, T., Shimada, S., Takeda, S., Itani, S., Higashimori, A., Nadatani, Y., Nagami, Y., Tanaka, F., Kamata, N., Yamagami, H., Tanigawa, T., Shiba, M., Tominaga, K., Fujiwara, Y., & Arakawa, T. (2016). Colchicine prevents NSAID-induced small intestinal injury by inhibiting activation of the NLRP3 inflammasome. Scientific reports, 6, 32587. https://doi.org/10.1038/srep32587
Paço, A., Brás, T., Santos, J. O., Sampaio, P., Gomes, A. C., & Duarte, M. F. (2022). Anti-Inflammatory and Immunoregulatory Action of Sesquiterpene Lactones. Molecules (Basel, Switzerland), 27(3), 1142. https://doi.org/10.3390/molecules2703114
Rafi, M., Suwartiny, N. L., & Rohaeti, E. (2022). Traditional Use, Phytochemical Composition, and Biological Activities of Sonchus arvensis. Indonesian Journal of Pharmacy, 540–553. https://doi.org/10.22146/ijp.3823
Ramis-Ramos, G., Simó-Alfonso, E., Escrig-Domenech, A., & Beneito-Cambra, M. (2016). Liquid chromatography of surfactants☆. In Elsevier eBooks. https://doi.org/10.1016/b978-0-12-409547-2.10737-1
Reza, A. S. M. A., Haque, M. A., Sarker, J., Nasrin, M. S., Rahman, M. M., Tareq, A. M., Khan, Z., Rashid, M., Sadik, M. G., Tsukahara, T., & Alam, A. K. (2021). Antiproliferative and antioxidant potentials of bioactive edible vegetable fraction of Achyranthes ferruginea Roxb. in cancer cell line. Food science & nutrition, 9(7), 3777–3805. https://doi.org/10.1002/fsn3.2343
Richette, P., Perez-Ruiz, F., Doherty, M., Jansen, T. L., Nuki, G., Pascual, E., Punzi, L., So, A. K., & Bardin, T. (2014). Improving cardiovascular and renal outcomes in gout: what should we target?. Nature reviews. Rheumatology, 10(11), 654–661. https://doi.org/10.1038/nrrheum.2014.124
Ridker P. M. (2016). From C-Reactive Protein to Interleukin-6 to Interleukin-1: Moving Upstream To Identify Novel Targets for Atheroprotection. Circulation research, 118(1), 145–156. https://doi.org/10.1161/CIRCRESAHA.115.306656
Rizvi, S. N. R., Afzal, S., Khan, K., Aati, H. Y., Rao, H., Ghalloo, B. A., Shahzad, M. N., Khan, D. A., Esatbeyoglu, T., & Korma, S. A. (2023). Chemical Characterisation, Antidiabetic, Antibacterial, and In Silico Studies for Different Extracts of Haloxylon stocksii (Boiss.) Benth: A Promising Halophyte. Molecules/Molecules Online/Molecules Annual, 28(9), 3847. https://doi.org/10.3390/molecules28093847
Safrina, D., Susanti, D., Dewi T.F., Dita, M. (2020). Kadar Flavonoid Total Simplisia Tempuyung (Sonchus arvensis) dengan Metode Pengeringan Kombinasi di Dataran Tinggi. Agrista: Jurnal Ilmiah Mahasiswa Agribisnis UNS, 4(1), 2020, 95-102.
Selders, G. S., Fetz, A. E., Radic, M. Z., & Bowlin, G. L. (2017). An overview of the role of neutrophils in innate immunity, inflammation and host-biomaterial integration. Regenerative biomaterials, 4(1), 55–68. https://doi.org/10.1093/rb/rbw041
Shen, Y. C., Chiou, W. F., Chou, Y. C., & Chen, C. F. (2003). Mechanisms in mediating the anti-inflammatory effects of baicalin and baicalein in human leukocytes. European journal of pharmacology, 465(1-2), 171–181. https://doi.org/10.1016/s0014-2999(03)01378-5
Singh, J. A., & Gaffo, A. (2020). Gout epidemiology and comorbidities. Seminars in arthritis and rheumatism, 50(3S), S11–S16. https://doi.org/10.1016/j.semarthrit.2020.04.008
Spano, M., Di Di Matteo, G., Ingallina, C., Ambroselli, D., Carradori, S., Gallorini, M., Giusti, A. M., Salvo, A., Grosso, M., & Mannina, L. (2022). Modulatory properties of food and nutraceutical components targeting NLRP3 inflammasome activation. Nutrients, 14(3), 490. https://doi.org/10.3390/nu14030490
Tamassia, N., Bianchetto-Aguilera, F., Arruda-Silva, F., Gardiman, E., Gasperini, S., Calzetti, F., & Cassatella, M. A. (2018). Cytokine production by human neutrophils: Revisiting the "dark side of the moon". European journal of clinical investigation, 48 Suppl 2, e12952. https://doi.org/10.1111/eci.12952
Tchivileva, I. E., Nackley, A. G., Qian, L., Wentworth, S., Conrad, M., & Diatchenko, L. B. (2009). Characterization of NF-KB-Mediated inhibition of Catechol-O-Methyltransferase. Molecular Pain, 5, 1744–13. https://doi.org/10.1186/1744-8069-5-13
To, N. B., Nguyen, Y. T., Moon, J. Y., Ediriweera, M. K., & Cho, S. K. (2020). Pentadecanoic Acid, an Odd-Chain Fatty Acid, Suppresses the Stemness of MCF-7/SC Human Breast Cancer Stem-Like Cells through JAK2/STAT3 Signaling. Nutrients, 12(6), 1663. https://doi.org/10.3390/nu12061663
Venn-Watson, S. K., & Butterworth, C. N. (2022). Broader and safer clinically-relevant activities of pentadecanoic acid compared to omega-3: Evaluation of an emerging essential fatty acid across twelve primary human cell-based disease systems. PloS one, 17(5), e0268778. https://doi.org/10.1371/journal.pone.0268778
Wahyuni, D. K., Rahayu, S., Purnama, P. R., Saputro, T. B., Suharyanto, Wijayanti, N., & Purnobasuki, H. (2019). Morpho-anatomical structure and DNA barcode of Sonchus arvensis L. Biodiversitas, 20(8). https://doi.org/10.13057/biodiv/d200841
Widiyarti, G., & Fitrianingsih, W. (2019). Phytochemical Constituents and Free Radical Scavenging Activity of Madang Gatal (Schima wallichii) Choisy Stem Bark. Pharmacognosy Journal, 11(2), 395–399. https://doi.org/10.5530/pj.2019.11.61
Xia, Z., Qu, W., Lu, H., Fu, J., Ren, Y., & Liang, J. (2010). Sesquiterpene lactones from Sonchus arvensis L. and their antibacterial activity against Streptococcus mutans ATCC 25175. Fitoterapia, 81(5), 424–428. https://doi.org/10.1016/j.fitote.2009.12.001
Xiao, N., Chen, H., He, S. Y., Xue, C. X., Sui, H., Chen, J., Qu, J. L., Liang, L. N., & Zhang, L. (2018). Evaluating the Efficacy and Adverse Effects of Clearing Heat and Removing Dampness Method of Traditional Chinese Medicine by Comparison with Western Medicine in Patients with Gout. Evidence-based complementary and alternative medicine : eCAM, 2018, 8591349. https://doi.org/10.1155/2018/8591349
Zhang, X., Liu, Y., Deng, G., Huang, B., Kai, G., Chen, K., & Li, J. (2021). A Purified Biflavonoid Extract From Selaginella moellendorffii Alleviates Gout Arthritis via NLRP3/ASC/Caspase-1 Axis Suppression. Frontiers in pharmacology, 12, 676297. https://doi.org/10.3389/fphar.2021.676297
Zhang, Y., Zhang, H., Chang, D., Guo, F., Pan, H., & Yang, Y. (2018). Metabolomics approach by 1H NMR spectroscopy of serum reveals progression axes for asymptomatic hyperuricemia and gout. Arthritis research & therapy, 20(1), 111. https://doi.org/10.1186/s13075-018-1600-5
Published
2025-01-30
How to Cite
Nita Parisa, Kamaluddin, M. T., Saleh, M. I., Sinaga, E., Partan, R. U., Irfannuddin, & Mangunsong, S. (2025). The Effectiveness of Tempuyung Leaves’ Water Fraction for Inflammation Prevention of Wistar Rats in an Acute Gout Arthritis Model . Indonesian Journal of Pharmacy. https://doi.org/10.22146/ijp.14504
Section
Research Article