Green Synthesis and Characterization of Zinc Nanoparticles using Azadiracta indica Extract
Abstract
Zinc nanoparticles are a nanotechnology utilizing the mineral zinc, which can act as a drug delivery system. Green synthesis of zinc nanoparticles using Azadiracta indica extract and their characterization is presented in this paper. The zinc nanoparticles were prepared by mixing 30 ml zinc nitrate hexahydrate with 5 ml of neem leaf extract. The extract was prepared with 100% aquadest. The characterization of zinc nanoparticles was performed using ultraviolet-visible spectrophotometry (UV-Vis), fourier-transform infrared spectroscopy (FTIR), particle size analyzer (PSA), x-ray diffraction (XRD), scanning electron microscopy-energy dispersive x-ray (SEM-EDX), and transmission electron microscope (TEM). The results showed that the wavelength of zinc nanoparticles was 365 nm. Based on FTIR analysis, the spectrum, showed the presence of functional groups in high intencity. The size of zinc nanoparticles is 368.8 nm with Polydispersity index (PDI) of 0.472. A typical phase plot was good in quality with no interference. The zeta potential value of zinc nanoparticles is -43.6 mV and the standard deviation is 18.8 mV. According to XRD analysis, the zinc nanoparticles have been indexed as the spherical to the hexagonal phase with high crystallinity, which is proved by the image of TEM. EDX profile authenticated the presence of only Zn, C, O and Si with no other elements contamination.
References
https://doi.org/10.24198/jf.v15i1.12138
Abomuti, M. A., Danish, E. Y., Firoz, A., Hasan, N., & Malik, M. A. (2021). Green synthesis of zinc oxide nanoparticles using Salvia officinalis leaf extract and their photocatalytic and antifungal activities. Biology, 10, 1075.
https://doi.org/10.3390/biology10111075
Ahmed, M., Marrez, D. A., Mohamed Abdelmoeen, N., Abdelmoneem Mahmoud, E., Ali, M. A. S., Decsi, K., & Tóth, Z. (2023). Studying the antioxidant and the antimicrobial activities of leaf successive extracts compared to the green-chemically synthesized silver nanoparticles and the crude aqueous extract from Azadirachta indica, Processes, 11, 1644.
https://doi.org/10.3390/pr11061644
Ajayan, A. S., & Hebsur, N. S. (2020). Green synthesis of zinc oxide nanoparticles using neem (Azadirachta indica) and Tulasi (Ocimum tenuiflorum) leaf extract and their characterisation. International journal of current microbiology and pplied sciences, 9, 277. https://doi.org/10.20546/ijcmas.2020.902.035
Aklilu, M., & Aderaw, T. (2022). Khat (Catha edulis) leaf extract-based zinc oxide nanoparticles and evaluation of their antibacterial activity. Journal of Nanomaterials, 2022. https://doi.org/10.1155/2022/4048120
Ali, E., Islam, M. S., Hossen, M. I., Khatun, M. M., & Islam, M. A. (2021). Extract of neem (Azadirachta indica) leaf exhibits bactericidal effect against multidrug resistant pathogenic bacteria of poultry. Veterinary medicine and science, 7, 1921. https://doi.org/10.1002/vms3.511
Alfira, K., N.L.A. Yusasrini, G.A.K. & Diah Puspawati. (2023). Pengaruh suhu dan waktu pengeringan terhadap karakteristik teh herbal daun mimba (Azadirachta indica A. Juss). (Effect of temperature and time drying time on the characteristics of neem leaf herbal tea (Azadirachta indica A. Juss)). Jurnal ilmu dan teknologi pangan, 12, 293.
https://doi.org/10.24843/itepa.2023.v12.i02.p06
Al-Jadidi, H. S. K., & Hossain, M. A. (2015). Studies on total phenolics, total flavonoids and antimicrobial activity from the leaves crude extracts of neem traditionally used for the treatment of cough and nausea. Beni-Suef University Journal of Basic and Applied Sciences, 4,93. https://doi.org/10.1016/j.bjbas.2015.05.001
Al-Naamani, L., Dobretsov, S., & Dutta, J. (2016). Chitosan-zinc oxide nanoparticle composite coating for active food packaging applications. Innovative Food Science & Emerging Technologies, 38, 231-237. https://doi.org/10.1016/j.ifset.2016.10.010
Aminuzzaman, M., Ying, L. P., Goh, W. S., & Watanabe, A. (2018). Green synthesis of zinc oxide nanoparticles using aqueous extract of Garcinia mangostana fruit pericarp and their photocatalytic activity, Bulletin of Materials Science,41, 1.
https://doi.org/10.1007/s12034-018-1568-4
Bhuyan, T., Mishra, K., Khanuja, M., Prasad, R., & Varma, A. (2015). Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Materials Science in Semiconductor Processing, 32, 55. https://doi.org/10.1016/j.mssp.2014.12.053
Bisht, G., & Rayamajhi, S. (2016). ZnO Nanoparticles: A Promising Anticancer Agent. Nanobiomedicine (Rij), 3, 9. https://doi.org/doi:10.5772/63437
Ghamsari, M., Alamdari, S., Han, W., & Park, H. H. (2017). Impact of nanostructured thin ZnO film in ultraviolet protection. International journal of nanomedicine, 207. https://doi.org/10.2147/IJN.S118637
Ghoshal, T., Biswas, S., Paul, M., & De, S. K. (2009). Synthesis of ZnO nanoparticles by solvothermal method and their ammonia sensing properties. Journal of Nanoscience and Nanotechnology, 9, 5973. https://doi.org/10.1166/jnn.2009.1290
Gilja, V., Vrban, I., Mandić, V., Žic, M., & Hrnjak-Murgić, Z. (2018). Preparation of a PANI/ZnO composite for efficient photocatalytic degradation of acid blue. Polymers, 10,940. https://doi.org/10.3390/polym10090940
Gupta, J., Irfan, M., Ramgir, N., Muthe, K. P., Debnath, A. K., Ansari, S., & Surjit, M. (2022). Antiviral activity of zinc oxide nanoparticles and tetrapods against the hepatitis e and hepatitis c viruses. Front Microbiol, 13, 881595. https://doi.org/doi:10.3389/fmicb.2022.881595
Hall, A. G., & King, J. C. (2023). The molecular basis for zinc bioavailability. International Journal of Molecular Sciences, 24, 6561. https://doi/10.3390/ijms24076561
Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H. C., & Kahru, A. (2008). Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and Crustaceans daphnia magna and Thamnocephalus platyurus. Chemosphere, 71,1308. https://doi/10.1016/j.chemosphere.2007.11.047
Hidayat, C., Sumiati, S., Jayanegara, A., & Wina, E. (2021). Supplementation of dietary nano Zn-phytogenic on performance, antioxidant activity, and population of intestinal pathogenic bacteria in broiler chickens. Tropical animal science journal, 44, 90. https://doi.org/10.5398/tasj.2021.44.1.90
Irinda, B. P., & Pratiwi, R. (2018). Analisis azadiraktin dalam ekstrak dan sediaan krim tanaman mimba menggunakan HPLC (Analysis of azadiractin in neem plant extracts and cream preparations using HPLC). Farmaka, 16, 36.
https://doi.org/10.24198/jf.v16i1.17337
Jayappa, M. D., Ramaiah, C. K., Kumar, M. A. P., Suresh, D., Prabhu, A., Devasya, R. P., & Sheikh, S. (2020). Green synthesis of zinc oxide nanoparticles from the leaf, stem and in vitro grown callus of Mussaenda frondosa L.: characterization and their applications. Applied nanoscience, 10, 3057.
https://doi/org/10.1007/s13204-020-01382-2
Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., & Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein journal of nanotechnology, 9,1050. https://doi.org/10.3762/bjnano.9.98
Kathiraven, T., Sundaramanickam, A., Shanmugam, N., & Balasubramanian, T. (2015). Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Applied Nanoscience, 5, 499. Https://doi.org/10.1007/s13204-0140341-2
Khoshhesab, Z. M., Sarfaraz, M., & Asadabad, M. A. (2011). Preparation of ZnO nanostructures by chemical precipitation method. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 41, 814. https://doi.org/10.1080/15533174.2011.591308
Lail, N. U., Sattar, A., Omer, M. O., Hafeez, M. A., Khalid, A. R., Mahmood, S., & Almutairi, M. M. (2023). Biosynthesis and characterization of zinc oxide nanoparticles using Nigella sativa against coccidiosis in commercial poultry. Scientific Reports, 13, 6568.
https://doi.org/10.1038/s41598-023-33416-4
Varenne, F., Botton, J., Merlet, C., Vachon, J. J., Geiger, S., Infante, I. C., & Vauthier, C. (2015). Toward a standardization of physico-chemical protocols for nanomedicine characterization: II. Zeta potential measurements. In 17th International Congress of Metrology (p. 14003). EDP Sciences. https://doi.org/10.1051/metrology/201514003
Lee, S. H., Lillehoj, H. S., Jang, S. I., Lee, K. W., Bravo, D., & Lillehoj, E. P. (2011). Effects of dietary supplementation with phytonutrients on vaccine-stimulated immunity against infection with Eimeria tenella. Veterinary parasitology, 181,97. https://doi.org/10.1016/j.vetpar.2011.05.003
Lopez-Miranda, J. L., Molina, G. A., Gonzalez-Reyna, M. A., Espana-Sanchez, B. L., Esparza, R., Silva, R., & Estevez, M. (2023). Antibacterial and anti-inflammatory properties of zno nanoparticles synthesized by a green method using sargassum extracts. International Journal of Molecular Sciences, 24(2). https://doi.org/10.3390/ijms24021474
Maiga, D. T., Nyoni, H., Nkambule, T. T., Mamba, B. B., & Msagati, T. A. M. (2020). Impact of zinc oxide nanoparticles in aqueous environments: Influence of concentrations, natural organic matter and ionic strength. Inorganic and Nano-Metal Chemistry, 50, 680. https://doi.org/10.1080/24701556.2020.1724145
Martien, R., Adhyatmika, A., Irianto, I. D., Farida, V., & Sari, D. P. (2012). Perkembangan teknologi nanopartikel sebagai sistem penghantaran obat (Technology developments nanoparticles as drug delivery systems). Majalah Farmaseutik, 8, 133. https://doi.org/10.22146/farmaseutik.v8i1.24067
Meléndrez, M. F., Cárdenas, G., & Arbiol, J. (2010). Synthesis and characterization of gallium colloidal nanoparticles. Journal of Colloid and Interface Science, 346, 279. https://doi/10.1016/j.jcis.2009.11.069
Mohammadi, C., Mahmud, S., Abdullah, S. M., & Mirzaei, Y. (2017). Green synthesis of ZnO nanoparticles using the aqueous extract of Euphorbia petiolata and study of its stability and antibacterial properties. Moroccan Journal of Chemistry, 5, 5.
https://doi.org/10.48317/IMIST.PRSM/morjchem-v5i3.8974
Moin, M. S., Siddiqui, J. I., Alam, M. A., Khatoon, F., Khan, S., & Minhajuddin, A. (2021). Ethnomedicinal potential of widely used plant Azadirachta indica A. Juss: A comprehensive review. The Journal of Phytopharmacology, 10,456. https://doi.org/10.31254/phyto.2021.10606
Muhammad, W., Ullah, N., Haroon, M., & Abbasi, B. H. (2019). Optical, morphological and biological analysis of zinc oxide nanoparticles (ZnO NPs) using Papaver somniferum L. RSC advances, 9, 29541.
https://doi.org/10.1039/c9ra04424h
Mutlaq, S., Albiss, B., Al-Nabulsi, A. A., Jaradat, Z. W., Olaimat, A. N., Khalifeh, M. S., & Holley, R. A. (2021). Conductometric immunosensor for Escherichia coli O157: H7 detection based on polyaniline/zinc oxide (PANI/ZnO) nanocomposite. Polymers, 13,3288. https://doi.org/10.3390/polym13193288
Nurbayasari, R., & Saridewi, N. (2017). Biosintesis dan karakterisasi nanopartikel ZnO dengan ekstrak rumput laut hijau Caulerpa Sp (Biosynthesis and characterization of ZnO nanoparticles with green seaweed extract Caulerpa Sp), Jurnal Perikanan Universitas Gadjah Mada, 19,17. https://doi.org/10.22146/jfs.24488
Nyabadza, A., McCarthy, É., Makhesana, M., Heidarinassab, S., Plouze, A., Vazquez, M., & Brabazon, D. (2023). A review of physical, chemical and biological synthesis methods of bimetallic nanoparticles and applications in sensing, water treatment, biomedicine, catalysis and hydrogen storage. Advances in Colloid and Interface Science, 103010. https://doi.org/10.1016/j.cis.2023.103010
Ramadanti, A. H., & Maharani, D. K. (2022). Green synthesis of ZnO nanoparticles with papaya leaf extract (Carica papaya L.) as a reductor and its application on cotton fabrics. Indonesian Journal of Chemical Science, 11, 198. https://doi.org/10.15294/ijcs.v11i3.52526
Romadhan, M. F., & Pujilestari, S. (2019). Sintesis nanopartikel ZnO dan aplikasinya sebagai edible coating berbasis pektin untuk memperpanjang umur simpan buah belimbing (Synthesis of ZnO Nanoparticles and their Application as Edible Coatings Based on Pectin to Extend the Shelf Life of Averrhoa carambola). Jurnal Agroindustri Halal, 5, 030.
https://doi.org/10.30997/jah.v5i1.1712
Singh, D. K., Pandey, D. K., Yadav, R. R., & Singh, D. (2012). A study of nanosized zinc oxide and its nanofluid. Pramana, 78, 759. https://doi.org/10.1007/s12043-012-0275-8
Skoog, D. A., Holler, F. J., & Nieman, T. A. (1998). Principles of instrumental analysis (5th ed., pp 849). Saunders College Publisher. Co.: Philadelphia.
Tiyaboonchai, W. (2003). Chitosan nanoparticles: a promising system for drug delivery. Naresuan University Journal: Science and Technology (NUJST), 11, 51. https://doi.org/10.1248/cpb.58.1423
Tarroum, M., Alfarraj, N. S., Al-Qurainy, F., Al-Hashimi, A., Khan, S., Nadeem, M., & Shaikhaldein, H. O. (2023). Improving the production of secondary metabolites via the application of biogenic zinc oxide nanoparticles in the calli of delonix elata: a potential medicinal plant. Metabolites, 13, 19. https://doi.org/10.3390/metabo13080905
Vasquez, E. S., Feugang, J. M., Willard, S. T., Ryan, P. L., & Walters, K. B. (2016). Bioluminescent magnetic nanoparticles as potential imaging agents for mammalian spermatozoa. Journal of nanobiotechnology, 14, 1. https://doi.org/10.1186/s12951-016-0168-y
Wahab, R., Siddiqui, M. A., Saquib, Q., Dwivedi, S., Ahmad, J., Musarrat, J., & Shin, H. S. (2014). ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity. Colloids and surfaces B: Biointerfaces, 117, 267. https://doi.org/10.1016/j.colsurfb.2014.02.038
Wang, Q., Xu, S., Zhong, L., Zhao, X., & Wang, L. (2023). Effects of zinc oxide nanoparticles on growth, development, and flavonoid synthesis in ginkgo biloba. International Journal of Molecular Sciences, 24,13. https://doi.org/10.3390/ijms242115775
Wen, H., Jung, H., & Li, X. (2015). Drug delivery approaches in addressing clinical pharmacology-related issues: opportunities and challenges. The American Association of Pharmaceutical Scientists, 17, 1327.
https://doi.org/10.1208/s12248-015-9814-9
Wylie, M. R., & Merrell, D. S. (2022). The antimicrobial potential of the neem tree Azadirachta indica. Frontiers in pharmacology, 13,891535. https://doi.org/10.3389/fphar.2022.891535
Xu, J., Yıldıztekin, M., Han, D., Keskin, C., Baran, A., Baran, M. F., Aziz, E., & Khalilov, R. (2023). Biosynthesis, characterization, and investigation of antimicrobial and cytotoxic activities of silver nanoparticles using Solanum tuberosum peel aqueous extract. Heliyon, 9. https://doi.org/10.1016/j.heliyon.2023.e19061
Yedurkar, S., Maurya, C., & Mahanwar, P. (2016). Biosynthesis of zinc oxide nanoparticles using Ixora coccinea leaf extract—a green approach. Open Journal of Synthesis Theory and Applications, 5, 1. https://doi.org/10.4236/ojsta.2016.51001
Yusof, N. A., N. Mat Zain, & N. Pauzi. (2019). Synthesis of chitosan/zinc oxide nanoparticles stabilized by chitosan via microwave heating. Bulletin of Chemical Reaction Engineering & Catalysis 14, 450. https://doi.org/10.9767/bcrec.14.2.3319.450-458
Yusof, H., Abdul Rahman, N. A., Mohamad, R., Zaidan, U. H., & Samsudin, A. A. (2022). Influence of dietary biosynthesized zinc oxide nanoparticles on broiler zinc uptake, bone quality, and antioxidative status. Animals (basel), 13, 115.
https://doi.org/10.3390/ani13010115
Yuvakkumar, R., J. Suresh, A. J. Nathanael, M. Sundrarajan, & S. I. Hong. (2014). Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications. Journal Materials Science and Engineering, 41, 1. https://doi.org/10.1016/j.msec.2014.04.025
Zhu, W., C. Hu, Y. Ren, Y. Lu, Y. Song, Y. Ji, C. Han, & J. He. (2021). Green synthesis of zinc oxide nanoparticles using Cinnamomum camphora (L.) Presl leaf extracts and its antifungal activity. Journal of Environmental Chemical Engineering.9, https://doi.org/10.1016/j.jece.2021.106659