Identifikasi kecakapan inovasi lembaga riset di Indonesia berbasis dokumen

  • Aris Yaman Statistika dan Sain Data, IPB University/LIPI http://orcid.org/0000-0002-0305-9054
  • Bagus Sartono Departemen Statistika dan Sain Data, IPB University
  • Agus M. Sholeh Departemen Statistika dan Sain Data, IPB University
Keywords: k-means clusstering, patent, technology specialist, metadata analysis

Abstract

Introduction. Duplication in inventions produced by research institutions in Indonesia becomes an issue. It is important to map the specialization of the invention in research institutions. This study examines  the mapping of the innovation in research institutions in Indonesia.

Data Collection Method. This study uses a patent-based technology document analysis method to map the potential of technology. The data used is patent data registered in the Direktorat Jenderal Kekayaan Intelektual (DJKI) database.

Data Analysis. Metadata analysis was conducted by using the K-Means Klastering method with R software.

Results and Discussions. The findings in the pre-analysis show that when the independent variable involved in the model are very large, the Localized feature selection method can effectively select variables without losing much information. There are 5 dominant technology groups that can be produced by research institutions in Indonesia, namely 1) Technology related to the development of measurement and testing instrument technology; 2) Technologies related to food and food ingredients; and 3) microstructural test equipment / detectors; 4) radar technology; 5) Technology in agriculture.

Conclusion. The findings show that there are still overlapping inventions by several research institutions in the same technology cluster. K-means clustering with LFSBSS pre analysis has a clear performance in the technology cluster space.

Author Biography

Aris Yaman, Statistika dan Sain Data, IPB University/LIPI

Mahasiswa Pasca Sarjana, Departemen Statistika dan Sain Data IPB University

Peneliti di Pusat Penelitian Informatika LIPI

References

Aggarwal, Charu C.; Reddy, C. K. (2014). Data clustering algorithms and applications (Whole Book) (C. K. Aggarwal, Charu C.; Reddy (ed.)). Taylor & Francis.

Artz, K. W., Norman, P. M., Hatfield, D. E., & Cardinal, L. B. (2010). A longitudinal study of the impact of R&D, patents, and product innovation on firm performance. Journal of Product Innovation Management, 27(5), 725–740. https://doi.org/10.1111/j.1540-5885.2010.00747.x

Chang, S. (2017). Technological forecasting & social change the technology networks and development trends of university-industry collaborative patents. Technological Forecasting & Social Change, 118, 107–113. https://doi.org/10.1016/j.techfore.2017.02.006

Chen, H., Zhang, G., Zhu, D., & Lu, J. (2017). Topic-based technological forecasting based on patent data: A case study of Australian patents from 2000 to 2014. Technological Forecasting and Social Change, 119, 39–52. https://doi.org/10.1016/j.techfore.2017.03.009

Dalilah, E., & Pratama, F. (2019). Permasalahan dan rumusan perbaikan pengelolaan dana penelitian di Indonesia. Integritas, 6(1), 109–124.

Dhir, S., Kumar, D., & Singh, V. B. (2019). Success and failure factors that impact on project implementation using agile software development methodology. In M. . Hoda (Ed.), Advances in Intelligent Systems and Computing (731st ed., Vol. 731). springer. https://doi.org/10.1007/978-981-10-8848-3_62

Johnson, R. A., & Wichern, D. W. (2007). Applied multivariate statistics (6th ed.). Pearson Prentice Hall.

Kim, G., & Bae, J. (2017). A novel approach to forecast promising technology through patent analysis. Technological Forecasting and Social Change, 117, 228–237. https://doi.org/10.1016/j.techfore.2016.11.023

Li, Y., Dong, M., & Hua, J. (2008). Localized feature selection for clustering. Pattern Recognition Letters, 29(1), 10–18. https://doi.org/10.1016/j.patrec.2007.08.012

Lu, L. Y. Y., & Liu, J. S. (2016). Technological Forecasting & social change a novel approach to identify the major research themes and development trajectory : The case of patenting research. Technological Forecasting & Social Change, 103, 71–82. https://doi.org/10.1016/j.techfore.2015.10.018

Madani, F., & Weber, C. (2016). The evolution of patent mining : Applying bibliometrics analysis and keyword network analysis. World Patent Information, 46, 32–48. https://doi.org/10.1016/j.wpi.2016.05.008

Markowitz, J. S. (2018). Multivariate analysis. Statstics Reference Online, 71–81. https://doi.org/10.1007/978-3-319-77203-5_8

Mubarok, M. F. (2017). Top 10 Perusahaan Farmasi Terbesar Indonesia. Https://Farmasiindustri.Com. https://farmasiindustri.com/industri/top-10-perusahaan-farmasi-indonesia.html

Noh, H., Song, Y. K., & Lee, S. (2016). Identifying emerging core technologies for the future: Case study of patents published by leading telecommunication organizations. Telecommunications Policy, 40(10–11), 956–970. https://doi.org/10.1016/j.telpol.2016.04.003

Presiden Republik Indonesia. (2016). Undang-Undang No 13 Tahun 2016. Paten (Issue 1). http://www.dgip.go.id/images/ki-images/pdf-files/uu_pp1/UU-nomor-13-tahun-2016-tentang-paten.pdf

Presiden RI. (2019). Peraturan Presiden Republik Indonesia No 74 Tahun 2019 tentang Badan Riset dan Inovasi Nasional (Issue 009525).

Schwab, K. (2019). The Global Competitiveness Report 2019. http://www3.weforum.org/docs/WEF_TheGlobalCompetitivenessReport2019.pdf

Su, F. P., Chen, S. J., Chang, Y. H., & Lai, K. K. (2019). Construct a three-stage analysis model of integrated main path analysis and patent family-exploring the development of blockchain. ACM International Conference Proceeding Series, 151–156. https://doi.org/10.1145/3374549.3374583

Wang, B., Liu, Y., Zhou, Y., & Wen, Z. (2018). Emerging nanogenerator technology in China: A review and forecast using integrating bibliometrics, patent analysis and technology roadmapping methods. Nano Energy, 46, 322–330. https://doi.org/10.1016/j.nanoen.2018.02.020

Wang, X., & Duan, Y. (2011). Identifying core technology structure of electric vehicle industry through patent co-citation information. Energy Procedia, 5, 2581–2585. https://doi.org/10.1016/j.egypro.2011.03.443

Wang, Y. L. (2012). Research on technology selection for enterprises with tools of patent analysis. International Conference on Management Science and Engineering - Annual Conference Proceedings, 1, 1651–1657. https://doi.org/10.1109/ICMSE.2012.6414394

WIPO. (2018). Guide to the international patent classification. WIPO (World Intellectual Property Organization). https://www.wipo.int/export/sites/www/classifications/ipc/en/guide/guide_ipc.pdf.

Yu, X., & Zhang, B. (2019). Obtaining advantages from technology revolution: A patent roadmap for competition analysis and strategy planning. Technological Forecasting and Social Change, 145(April), 273–283. https://doi.org/10.1016/j.techfore.2017.10.008

Zelterman, D. (2015). Applied multivariate statistics with R. In M. Gail, J. M. Samet, A. Tsiatis, & W. Wong (Eds.), Applied Multivariate Statistics with R. springer. https://doi.org/10.1007/978-3-319-14093-3

Published
2020-12-01
How to Cite
Yaman, A., Sartono, B., & Sholeh, A. M. (2020). Identifikasi kecakapan inovasi lembaga riset di Indonesia berbasis dokumen . Berkala Ilmu Perpustakaan Dan Informasi, 16(2), 142-154. https://doi.org/10.22146/bip.v16i2.424
Section
Articles