Hidroksiapatit dari cangkang telur sebagai bone graft yang potensial dalam terapi periodontal

https://doi.org/10.22146/mkgk.65729

Kosno Suprianto(1*), Hidayati Hidayati(2), Cytha Nilam(3), Nurul Khairiyah(4), Ratu Amelia(5), Siti Rahmadita(6)

(1) Departemen Periodontologi, Fakultas Kedokteran Gigi, Universitas Andalas, Padang
(2) Departemen Kesehatan Gigi Masyarakat, Fakultas Kedokteran Gigi, Universitas Andalas, Padang
(3) Kedokteran Gigi, Fakultas Kedokteran Gigi, Universitas Andalas, Padang
(4) Kedokteran Gigi, Fakultas Kedokteran Gigi, Universitas Andalas, Padang
(5) Kedokteran Gigi, Fakultas Kedokteran Gigi, Universitas Andalas, Padang
(6) Kedokteran Gigi, Fakultas Kedokteran Gigi, Universitas Andalas, Padang
(*) Corresponding Author

Abstract


Kebutuhan bone graft semakin meningkat seiring dengan meningkatnya kebutuhan terapi periodontal. Berbagai macam bahan alami telah diteliti sebagai bahan yang dapat digunakan untuk bone graft. Limbah cangkang telur merupakan pilihan yang potensial dibandingkan dengan bahan alami lainnya karena hidkroksiapatit (HA) dari cangkang telur memiliki kemampuan mensinter yang unggul. Studi pustaka ini bertujuan untuk menilai hidroksiapatit dari cangkang telur sebagai bahan bone graft untuk terapi periodontal. HA merupakan komposisi mineral utama yang hampir menyerupai komposisi mineral pada tulang. HA memiliki sifat biokompatibel, osteoinduktif dan osteokonduktif yang merupakan syarat ideal bahan bone graft. Penelitian sebelumnya melaporkan bahwa cangkang telur memiliki kemampuan yang lebih tinggi dalam pembentukan tulang. HA dari cangkang telur dapat mencegah transmisi penyakit karena dapat disterilkan dalam temperatur yang tinggi tanpa mengubah sifat biologisnya. Sumber alami HA lainnya yang berasal dari tulang sapi, tulang ikan, cangkang sotong, cangkang tiram dan terumbu karang telah diteliti sebelumnya. Namun, penggunaan yang terus menerus dapat menyebabkan kepunahan. Untuk itu, cangkang telur merupakan peluang yang bagus untuk mengurangi biaya dalam perawatan perbaikan tulang dengan dampak yang sedikit terhadap lingkungan. Kesimpulan: Cangkang telur merupakan bahan bone graft alami yang potensial karena memiliki sifat yang ideal sebagai bahan bone graft, kurangnya resiko transfer penyakit dan biaya yang efektif dan ekonomis, sehingga HA dari cangkang telur dapat digunakan sebagai bahan bone graft yang potensial.

Keywords


bone graft; cangkang telur; hidroksiapatit; terapi periodontal

Full Text:

PDF


References

Hung NN. Basic knowledge of bone grafting. In: Zorzi A. Bone grafting. 2012.11–38.

Abhishek K, Jigyasa B, Sunny MB. Bone grafts in periodontal surgery: a review. 2014; (3):28–9.

Sheikh Z, Sima C, Glogauer M. Bone replacement materials and techniques used for achieving vertical alveolar bone augmentation. Materials (Basel). 2015; 8(6): 2953–93.

Hengky A. Peran hidroksiapatit sebagai bone graft dalam proses penyembuhan tulang. Stomatognatik J Kedokt Gigi. 2011; 8(2): 6–9.

Neunzehn J, Szuwart T, Wiesmann HP. Eggshells as natural calcium carbonate source in combination with hyaluronan as beneficial additives for bone graft materials, an in vitro study. Head Face Med. 2015; 11(1): 1–10.

Van der Stok J, Van Lieshout EMM, El-Massoudi Y, Van Kralingen GH, Patka P. Bone substitutes in the Netherlands - a systematic literature review. Acta Biomater. 2011; 7(2): 739–50. Available at http://www.sciencedirect.com/science/article/pii/S1742706110003557

Jangid MR, Rakhewar PS, Nayyar AS, Cholepatil A, Chhabra P. Bone grafts and bone graft substitutes in periodontal regeneration: a review. Int J Curr Res Med Sci. 2016; 2(8): 1–7. Available at http://s-o-i.org/1.15/ijcrms-2016-2-8-1

Takey N, Carranza K. Clinical periodontology. 2006.

Abdulrahman I, Tijani HI, Mohammed BA, Saidu H, Yusuf H, Jibrin MN, et al. From garbage to biomaterials : an overview on egg shell based hydroxyapatite. J Mater. 2014; 2014: 6.

Yasmin AR, Kalyani D, Chennai AU. Naturally derived porous hydroxyapatite / polymer biocomposite of cuttlebone and eggshell for dental and orthopedic applications. Int J Res Appl Sci Eng Technol. 2015; 3(6): 471–7.

Sulistyowati E, Sampe S. Pembuatan hidroksi apatit dari kulit telur. 2012; 1–5.

Shenoy R, Pillai A. Biology of fracture healing - an overview. 2017; 5(2): 48–52. Available at https://www.boa.ac.uk/wp-content/uploads/2017/05/Biology-of-fracture-healing-an-overview-References.pdf

Sathyendra V, Darowish M. Basic science of bone healing. Hand Clin. 2013; 29(4): 473–81. Available at http://dx.doi.org/10.1016/j.hcl.2013.08.002

Shantz J, Marcucio R, Kim H, Miclau III T. Bone and cartilage healing. Fract Adults. 2015; 109–25. Available at http://freecontent.lww.com/wp-content/uploads/2015/03/Tornetta-Ch4-Bone-and-Cartilage-Healing.pdf

Pandit N, Pandit I. Autogenous bone grafts in periodontal practice: a literature review. J Int Clin Dent Res Organ. 2016; 8(1): 27. Available at http://www.jicdro.org/text.asp?2016/8/1/27/176247

Ahmad R, Kidwai SM, Shrivastav P, Singh A. Periodontal regeneration in clinical practice : a case report. 2016; 3(10): 55–8.

Balázsi K, Gergely G, Chae CH, Sim HY, Choi JY, Kim SG, et al. Biogenic hydroxyapatite from eggshell as bone formation material. Eur Cells Mater. 2012; 24(1): 18.

Pignatello R. Biomaterials Applications for Nanomedicine. Biomaterials Applications for Nanomedicine. 2011. 1-470

Chetty A, Wepener I, Marei MK, Kamary Y El, Moussa RM. Hydroxyapatite : Synthesis, properties and applications. Nov Sci Publ. 2012;91–132.

Kattimani VS, Kondaka S, Lingamaneni KP. Hydroxyapatite — Past , Present , and Future in Bone Regeneration. Bone Tissue Regen Insights. 2016;7:9–19.

Hamidi AA, Salimi MN, Yusoff AHM. Synthesis and characterization of eggshell-derived hydroxyapatite via mechanochemical method: a comparative study. AIP Conf Proc. 2017; 1835.

Oryan A, Bigham-Sadegh A, Monazzah S. Fish bone versus fish demineralized bone matrix (vertebra) effects on healing of experimental radial defect in rat model. Comp Clin Path. 2016; 25(5): 981–5.

Vohra A. Radiological measurement of bone density to assess the efficiency of bone graft. 2016; 3(2): 88–91.

Jo YY, Kim SG, Kwon KJ, Kweon HY, Chae WS, Yang WG, et al. Silk fibroin-alginate-hydroxyapatite composite particles in bone tissue engineering applications in vivo. Int J Mol Sci. 2017; 18(4).

Hosseini B, Mirhadi SM, Mehrazin M, Yazdanian M, Motamedi MRK. Synthesis of nanocrystalline hydroxyapatite using eggshell and trimethyl phosphate. Trauma Mon. 2017; 22(5): 0–5.

Khandelwal H, Prakash S. Synthesis and characterization of hydroxyapatite powder by eggshell. J Miner Mater Charact Eng. 2016; 4: 119–26.

Hatim NA, Ahmad ZM. A novel method for conversion of eggshell hydroxyapatite particles to nano-size using microwave irradiation. 2013; 2(11): 71–6.

Kattimani VS, Chakravarthi PS, Kanumuru NR, Subbarao V V, Sidharthan A, Kumar TSS, et al. Eggshell derived hydroxyapatite as bone graft substitute in the healing of maxillary cystic bone defects: a preliminary report. J Int oral Heal JIOH. 2014; 6(3): 15–9. Available at http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4109239&tool=pmcentrez&rendertype=abstract



DOI: https://doi.org/10.22146/mkgk.65729

Article Metrics

Abstract views : 7318 | views : 13133

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 MKGK (Majalah Kedokteran Gigi Klinik) (Clinical Dental Journal) UGM

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


View my stats

site
stats