The Effectiveness of injectable platelet-rich fibrin and bone graft addition to open flap debridement for infrabony pocket therapy
Rizka Dindarini(1), Dahlia Herawati(2), Sri Pramestri Lastianny(3*)
(1) Periodontics Specialty Program, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta
(2) Department of Periodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta
(3) Department of Periodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta
(*) Corresponding Author
Abstract
Various biomaterials have been utilized as additional material to help tissue regeneration in the open flap debridement (OFD) procedure. Platelet-rich fibrin (PRF) is an autologous platelet concentrate that contains many growth factors (GFs) and generally used as an additional biomaterial in OFD. However, PRF has several weaknesses, such as its consistency, which is hard to mix with another biomaterial, and its abundant sediment of regenerative cells resulted from high-speed centrifugation. Injectable Platelet Rich Fibrin (I-PRF) is one of the PRF derivatives that contain more regenerative cells. Due to the low-speed centrifugation, I-PRF has a liquid form. Certain GFs were also found in I-PRF, such as PDGF, TGF-β1, VEGF, IGF, EGF dan COL-Ia. In this study, we measured probing depth (PD), relative attachment level (RAL), and bone height as the healing parameter, to see the effectiveness of I-PRF addition and bone graft in the OFD for infrabony pocket as the aim of this study. Twenty (20) periodontal pockets were chosen (PD= 5-7 mm) and divided into OFD+I-PRF+bone graft (bg) group (group I) and OFD+PRF+bg group (group II) equally. The clinical evaluation was measured at the baseline, day-30, and day-90. Results showed that PD (p= 0.022) and RAL (p= 0.008) significantly increased in group I (PD 2.80 ± 0.42; RAL 2.50 ± 0.52) compared to group II (PD 2.10 ± 0.73; RAL 2.00 ± 0.67); however, there was no significant difference in the bone height (p= 0.194). Taken together, our data revealed that I-PRF+bg induces soft tissue regeneration in infrabony pocket treatment.
Keywords
Full Text:
PDFReferences
1. Ashawan P, Zade R. Comparative evaluation of bioactive glass bone graft material with
platelet rich fibrin and bioactive glass bone graft material alone for the treatment of periodontal intrabony defects: a clinical and radiographic study. Int J Res Med Sci. 2016; 4(8): 3288–3329.
doi: 10.18203/2320-6012.ijrms20162281
2. Shue L, Yufeng Z, Mony U. Biomaterials for periodontal regeneration: a review of ceramics
and polymers. Biomatter. 2012; 2(4): 271–277. doi: 10.4161/biom.22948
3. Newman MG, H Tahei H, Klokkevold PR, Carranza FA. Newman and Carranza’s Clinical Periodontology. Elsevier; 2018. 944.
4. Graziani F, Karapetsa D, Mardas N, Leow N, Donos N. Surgical treatment of the residual
periodontal pocket. Periodontol 2000. 2018; 76(1): 150–163. doi: 10.1111/prd.12156
5. Ausenda F, Rasperini G, Acunzo R, Gorbunkova A, Pagni G. New Perspectives in the use of biomaterials for periodontal regeneration. Materials (Basel). 2019; 12(13): 2197. doi: 10.3390/ma12132197
6. Miron R, Fujioka-Kobayashi M, Hernandez M, Kandalam U, Zhang Y, Ghanaati S, Choukroun
J. Injectable platelet rich fibrin (i-PRF): opportunities in regenerative dentistry?. Clin Oral Investig. 2017; 21(8): 2619–2627. doi: 10.1007/s00784-017-2063-9
7. Panda S, Doraiswamy J, Malaiappan S, Varghese SS, & Del Fabbro M. Additive effect of autologous platelet concentrates in treatment of intrabony defects: a systematic review and meta-analysis. J Investig Clin Dent. 2016; 7(1): 13–26. doi: 10.1111/jicd.12117
8. Varela HA, Souza JCM, Nascimento RM, Araújo RF, Vasconcelos RC, Cavalcante RS, Guedes PM, Araújo AA. Injectable platelet rich fibrin: cell content, morphological, and protein characterization. Clin Oral Investig. 2019; 23(3): 1309–1318.
doi: 10.1007/s00784-018-2555-2
9. Fujioka-Kobayashi M, Miron RJ, Hernandez M, Kandalam U, Zhang Y, Choukroun J. Optimized platelet-rich fibrin with the lowspeed concept: growth factor release, biocompatibility, and cellular response. J Periodontol. 2017; 88(1): 112–121. doi: 10.1902/jop.2016.160443
10. Thanasrisuebwong P, Kiattavorncharoen S, Surarit R, Phruksaniyom C, Ruangsawasdi
N. Red and yellow injectable platelet-rich fibrin demonstrated differential effects on
periodontal ligament stem cell proliferation, migration, and osteogenic differentiation. Int J
Mol Sci. 2020; 21(14): 1–12. doi: 10.3390/ijms21145153
11. Thanasrisuebwong P, Surarit R, Bencharit S, Ruangsawasdi N. Influence of fractionation
methods on physical and biological properties of injectable platelet-rich fibrin: an exploratory
study. Int J Mol Sci. 2019. 20(7): 1657. doi: 10.3390/ijms20071657
12. Sivolella S, De M, Brunello G, Ricci S, Tadic D, Marinc C, Lops D, Ferroni L, Gardin C, Bressan E, Zav B. Delivery systems and role of growth factors for alveolar bone regeneration in dentistry. Regen Med Tissue Eng. 2013. doi: 10.5772/55580
13. Karde PA, Sethi KS, Mahale SA, Khedkar SU, Patil AG, Joshi CP. Comparative evaluation of platelet count and antimicrobial efficacy of injectable platelet-rich fibrin with other platelet
concentrates: An in vitro study. J Indian Soc Periodontol. 2017; 21(2): 97–101.
doi: 10.4103/jisp.jisp_201_17
14. Iozon S, Caracostea GV, Páll E, Şoriţău O, Mănăloiu ID, Bulboacă AE, Lupşe M, Mihu CM, Roman AL. Injectable plateletrich fibrin influences the behavior of gingival mesenchymal stem cells. Rom J Morphol Embryol. 2020; 61(1): 189–198. doi: 10.47162/RJME.61.1.21
15. Borges CD, Ricoldi MS, Messora MR, Palioto DB, Souza SLS de, Novaes Júnior AB, Taba Jr M. Clinical attachment loss and molecular profile of inflamed sites before treatment. J Appl Oral Sci. 2019; doi: 10.1590/1678-7757-2018-0671
16. Wang X, Zhang Y, Choukroun J, Ghanaati S, Miron RJ. Effects of an injectable plateletrich
fibrin on osteoblast behavior and bone tissue formation in comparison to platelet-rich
plasma. Platelets. 2018; 29(1): 48–55. doi: 10.1080/09537104.2017.1293807
17. Saskianti T, Yuliartanti W, Ernawati DS, Prahasanti C, Suardita K. BMP4 expression following stem cells from human exfoliated deciduous and carbonate apatite transplantation on rattus norvegicus. J Krishna Inst Med Sci Univ. 2018; 7(2): 56–61.
18. Jebahi S, Saoudi M, Badraoui R, Rebai T, Oudadesse H, Ellouz Z, Keskese H, El Feki
A, El Feki H. Biologic response to carbonated hydroxyapatite associated with orthopedic
device: Experimental study in a rabbit model. Korean J Pathol. 2012; 46(1): 48–54.
doi: 10.4132/KoreanJPathol.2012.46.1.48
DOI: https://doi.org/10.22146/majkedgiind.63600
Article Metrics
Abstract views : 1566 | views : 1455Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Majalah Kedokteran Gigi Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.