Effect of low-intensity pulsed ultrasound on mast cell degranulation and fibroblast expression on type 2 diabetes mellitus rats wound healing process

https://doi.org/10.22146/majkedgiind.59132

Intan Maharani(1*), Cahya Yustisia Hasan(2), Bambang Dwirahardjo(3), Tri Wahyu Pangestiningsih(4)

(1) RSUD Tidar Magelang, Central Java Oral and Maxillofacial Surgery Specialty Program, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta
(2) Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta
(3) Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta
(4) Departement of Anatomy, Faculty of Veterinary, Universitas Gadjah Mada, Yogyakarta
(*) Corresponding Author

Abstract


Impaired wound healing is one of the Diabetes mellitus complications. Low-intensity Pulsed Ultrasound (LIPUS) therapy may accelerate the impaired wound healing. The use of LIPUS therapy in the early inflammatory phase can induce mast cell degranulation, and in the proliferative phase it can increase collagen synthesis by fibroblasts. The purpose of this study was to determine the effects of LIPUS therapy on mast cell degranulation and fibroblast
expression in the healing process of punch biopsy wound in rats with type 2 diabetes mellitus. Twenty-four Sprague dawley (n=24) were designed into type 2 diabetes mellitus by injecting Nicotinamide and Streptozotocin, then divided into six groups: diabetes mellitus without LIPUS (DM3, DM7, DM14) and diabetes mellitus with LIPUS (DML3, DML7, DML14), 4 each, and punch biopsy wounds were made on the dorsal skin. The DML group received LIPUS therapy in the wound area (frequency 3 MHz, intensity 0.5 W/cm2, duty cycle 20%, duration 3 minutes every day for 3 days (DML3), 7 days (DML7), and 14 days (DML14). The wounded tissue area was stained with toluidine blue to observe mast cell degranulation and immunohistochemical type HSP-47 to observe fibroblast expression. Two-Way ANOVA and Post Hoc LSD tests were used to determine the differences in mast cell degranulation and fibroblast expression. The results showed that mast cell degranulation and fibroblast expression in the DML group were higher than in the DM group (table 1). Pearson test showed a correlation between mast cell degranulation and fibroblast expression (p=0.00; r= 0.839). LIPUS therapy increases mast cell degranulation and fibroblast expression in type 2 diabetes mellitus rat model. The higher the mast cell degranulation, the higher fibroblast expressions.


Keywords


fibroblast expression; Low-intensity Pulsed Ultrasound (LIPUS); mast cell degranulation; type 2 diabetes mellitus

Full Text:

PDF


References

1. Velnar T, Bailey T, Smrkolj V. The wound healing process: an overview of the cellular
and molecular mechanisms. J Int Med Res. 2009; 37(5): 1528-1542.
doi: 10.1177/147323000903700531

2. Flanagan M. The physiology of wound healing. J Wound Care. 2000; 9(6): 299-300.
doi: 10.12968/jowc.2000.9.6.25994

3. Orsted HL, Keast D, Forest-Lalande L, Megie MF. Basic principle of wound healing. Wound
Care Canada. 2011; 9(2): 4-8.

4. Abubaker OA, Lam D, Benson KJ. Oral and Maxillofacial Surgery Secrets. Missouri: Elsevier; 2016.

5. Retzepi M, Donos N. The effect of diabetes mellitus on osseous healing. Clin Oral Implants
Res. 2010; 21(7): 673-681. doi: 10.1111/j.1600-0501.2010.01923.x.

6. Kempuraj D, Caraffa A, Ronconi G, Lessiani G. Are mast cells important in diabetes?. Pol
J Pathol. 2016; 67(3): 199-206. doi: 10.5114/pjp.2016.63770

7. Tellechea A, Leal EC, Kafanas A, Auster ME, Kuchibhotla S, Ostrovsky Y, Tecilazich F, Baltzis
D, Zheng Y, Carvalho E, Zabolotny JM, Weng Z, Petra A, Patel A, Panagiotidou S, Pradhan-
Nabzdyk L, Theoharides TC, Veves A. Mast cells regulate wound healing in diabetes. Diabetes.
2016; 65(7): 2006-2019. doi: 10.2337/db15-0340

8. Desta T, Li J, Chino T, Graves DT. Altered fibroblast proliferation and apoptosis in
diabetic gingival wounds. J Dent Res. 2010; 89(6): 609-614.
doi: 10.1177/0022034510362960

9. Iwanabe Y, Masaki C, Tamura A, Tsuka S, Mukaibo T, Kondo Y, Hosokawa R. The Effect
of low-intensity pulsed ultrasound on wound healing using scratch assay in epithelial cells.
J Prosthodont Res. 2016; 60(4): 308-314. doi: 10.1016/j.jpor.2016.03.002.

10. Fyfe MC, Chahl LA. Mast cell degranulation and increased vascular permeability induced
by ‘therapeutic’ ultrasound in the rat ankle joint. Br J Exp Pathol. 1984; 65(6): 671-676.

11. Zhou S, Schmelz A, Seufferlein T, Li Y, Zhao J, Bachem MG. Molecular mechanisms of
low intensity pulsed ultrasound in human skin fibroblasts. J Biol Chem. 2004; 279(52):
54463-54469. doi: 10.1074/jbc.M404786200.

12. Bell J. Handling and Restraint of Rats, Howard University. 2017, Available at http://www.
orrchoward.com/Handling_and_Restraint_of_Rats.pdf.

13. Mescher AL. Junqueira’s Basic Histology Text and Atlas, 14th Ed. New York: McGraw-Hill
Education; 2016. 96-100.

14. Nugroho A. Review: animal models of diabetes mellitus: pathology and mechanism
of some diabetogenics. Biodiversitas. 2006; 7(4): 378- 382. doi: 10.13057/biodiv/d07041 5

15. Szkudelski T. Streptozotocin-nicotinamideinduced diabetes in the rat. Characteristics
of the experimental model. Exp Biol Med (Maywood). 2012; 237(5): 481–490.
doi: 10.1258/ebm.2012.011372

16. Tian S, Li M, Dong F, Zhang F. The Role of low-intensity pulsed ultrasound on bone and soft tissue healing. International Journal of Clinical and Experimental Medicine. 2016; 9(7): 12450-12456.

17. Nakhaee A, Bokaeian M, Saravani M, Akbarzadeh A. Attentuation of oxydative stress in streptozotocin-induced diabetic rats by eucalyptus globulus. Indian J Clin Biochem. 2009; 24(4): 419-425. doi: 10.1007/s12291-009-0075-1

18. Zhou Y. Principles and applications of theraupetic ultrasound in healthcare. Taylor & Francis Group, Boca Raton: CRC Press; 2016. 145-170.

19. Watson T. Electrotherapy: Evidence-Based Practice, 12th Ed. Edinburgh: Churchill Livingstone Elsevier; 2008. 179-200.

20. De Oliveira PD, Oliveira DAAP, Martinago CC, Frederico RCP, Soares CP, De Oliveira,
RF. Effect of low-intensity pulsed ultrasound therapy on a fibroblasts cell culture. Fisioter
Pesq. 2015; 22(2): 112-118. doi: 10.590/1809-2950/12860222022015

21. Estevao LRM, de Medeiros JP, Simões RS, Arantes RME, Rachid MA, da Silva RMG, Mendonça FS, Evêncio-Neto J. Mast cell concentration and skin wound contraction in rats treated with Brazilian pepper essential oil (Schinus terebinthifolius Raddi). Acta Cir Bras. 2015; 30(4): 289-295. doi: 10.1590/S0102-865020150040000008

22. Conner-Kerr T, Oesterle ME. Current perspectives on therapeutic ultrasound in the management of chronic wounds: a review of evidence. Chronic Wound Care Management
and Research. 2017; 4: 89–98. doi: 10.2147/CWCMR.S135982

23. Maan ZN, Januszyk M, Rennert RC, Duscher D, Rodrigues M, Fujiwara T, Whitmore
NHA, Hu MS, Longaker MT, Gurtner GC. Noncontact, low-frequency ultrasound therapy
enhances neovascularization and wound healing in diabetic mice. Plast Reconstr Surg.
2014; 134(3): 402e–411e. doi: 10.1097/PRS.0000000000000467

24. Weinheimer-Haus EM, Judex S, Ennis WJ, Koh TJ. Low-Intensity vibration improves
angiogenesis and wound healing in diabetic mice. PLoS One. 2014; 9(3): e91355.
doi: 10.1371/journal.pone.0091355

25. Carrer VM, Setti JAP, Varonez DL, Moser AD. Continuous therapeutic ultrasound in
the healing process in rat skin. Fisioter Mov. 2015; 28(4): 751-758.
doi:10.1590/01035150.028. 004.AO12

26. Alkahtani SA, Kunwar PS, Jalilifar M, Rashidi S, Yadollahpour A. Ultrasound-based techniques
as alternative treatments for chronic wounds: a comprehensive review of clinical applications.
Cureus. 2017; 9(12): e1952. doi: 10.7759/cureus.1952.



DOI: https://doi.org/10.22146/majkedgiind.59132

Article Metrics

Abstract views : 1258 | views : 1105

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Majalah Kedokteran Gigi Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


 

 View My Stats


real
time web analytics