Non-Dental glass fiber impregnation on flexural strength of fiber reinforced composite

https://doi.org/10.22146/majkedgiind.17137

Nilasary Rochmanita Suparno(1*), Siti Sunarintyas(2), Muhammad Kusumawan Herliansyah(3)

(1) Fakultas Kedokteran Gigi, Universitas Muhammadiyah Surakarta, Surakarta, Jawa Tengah
(2) Departemen Biomaterial, Fakultas Kedokteran Gigi, Universitas Gadjah Mada, Yogyakarta
(3) Jurusan Teknik Mesin, Fakultas Teknik, Universitas Gadjah Mada, Yogyakarta
(*) Corresponding Author

Abstract


The availability of dental E-glass fibers for Fiber Reinforcement (FRC) restoration is limited in Indonesia with relatively high cost.Therefore, non-dental glass fibers have been used as an alternative material. The composition of non-dental glass fibers is almost the same with dental E-glass fibers. An important parameter responsible for the strength of FRC is the impregnation of the fibers with resin. Reinforcing fibers are difficult to impregnate with the resin systems of high viscosity. The aim of study is to assess the effect of non-dental glass fibers impregnation using bis-GMA and TEGDMA resin on the flexural strength of FRC. The materials used in the study were non-dental glass fibers (CMAX, China), resin bis-GMA (Sigma-Aldrich, USA) and TEGDMA (Sigma-Aldrich, USA). Three groups of samples consisted of FRC with non-impregnated fibers, FRC with impregnated fibers (bis-GMA:TEGDMA=4:1) and FRC with impregnated fibers (bis-GMA:TEGDMA=1:1). The three groups were tested to determine flexural strength according to ISO 10477. The samples were stored in aquadest at 37 °C for 24 hours prior to flexural strength test. The results were analyzed by one way ANOVA with LSD post hoc test. The results of study showed that the lowest mean of flexural strength (116.16 ± 15.87MPa) was FRC with non-impregnated fiber and the highest mean (151.32 ± 23.74 MPa) was FRC with impregnated fiber (bis-GMA:TEGDMA=1:1). The statistical analysis showed that fiber impregnation had a significant effect (p< 0.05). It can thenbe concluded that non-dental glass fiber impregnation using bis-GMA and TEGDMA resin could increase the flexural strength of FRC and FRC with the impregnated fibers (bis-GMA:TEGDMA=1:1) that had the highest mean of flexural strength.


Keywords


non-dental glass fiber; fiber impregnation; flexural strength

Full Text:

PDF


References

1. Khan AS, Azam MT, Khan M, Mian SA, Rehman IU. An update on glass fiber dental restorative composites: a systematic review. MSE. 2015; 47: 26 – 39.


2. Garoushi S, Vallittu P. Fiber-reinforced composites in fixed partial dentures. Libyan J Med. 2006; 1(1): 73 – 82.


3. Zhang M, Matinlinna JP. E-Glass fiber reinforced composite in dental application. Silicon. 2012; 4: 73 – 78.


4. Freilich MA, Meiers JC, Duncan JP, Goldberg AJ. Fiber-reinforced composite in clinical dentistry. Chicago: Quintessence Publishing Co.; 2000. 1 – 25.


5. Ballo AM. Fiber-Reinforced composite as oral implant material: experimental studies of glass fiber and bioactive glass in vitro and in vivo. Dissertation. Finland: University of Turku; 2008.


6. Vallittu PK. Glass fibers in fiber-reinforced composites, In Matinlinna JP (ed): Handbook of oral biomaterials. Singapore: Pan Stanford Publishing; 2014. 255 – 270.


7. Kinsella M, Murray D, Crane D, Mancinelli J, Kranjc M. Mechanical properties of polymeric composites reinforced with high strength glass fiber [Internet]. 2014 [cited 2015 December 2nd]. Available from: https://www.agy.com/wp-content/uploads/2014/03/Mechanical_Properties_of_Polymeric_Composites-Technical.pdf


8. Johnson T. Uses of Fiberglass [Internet]. 2015 [cited 2015 December 4th]. Available from: http://composite.about.com/od/aboutglass/a/Uses-OfFiberglass.htm.


9. Sari WP, Sumantri D, Imam DNA, Sunarintyas S. Pemeriksaan komposisi glass fiber komersial dengan teknik X-Ray Fluorescence Spectrometer (XRF). J.B-Dent. 2014; 1(2): 15160.


10. Dewi ZY. Pengaruh perbedaan komposisi antara glass fiber dental dan glass fiber non dental pada fiber reinforced composite terhadap perlekatan bakteri Streptococcus mutans. J.B-Dent. 2016; 3(1): 54 – 58.


11. Murdiyanto D, Widjijono, Nuryono. Pengaruh jenis dan lama perendaman non-dental glass fiber reinforced composite terhadap sitotoksisitas sel fibroblas. J.B-Dent. 2015; 2(1): 36 – 43.


12. Sari WP, Sunarintyas S, Nuryono. Pengaruh komposisi beberapa glass fiber non dental terhadap kekuatan fleksural fiber reinforced composites. J.B-Dent. 2015; 2(1): 29 – 35.


13. Dindal CD. The effect of impregnated glass fibers on the flexural strength of acrylic and composite resin: an in vitro study [Internet]. 2012 [cited 2016 February 17th]. Available from: https://core.ac.uk/download/pdf/12211317.pdfn


14. Abdulmajeed AA, Nӓrhi TO, Vallitu PK, Lassila LV. The effect of high fiber fraction on some mechanical properties of unidirectional glass fiber-reinforced composite. Dent Mater. 2011; 27: 313 – 321.


15. Vallittu PK. Fibre-Reinforced composites for dental applications, In Curtis RV, Watson TF., (ed): Dental biomaterials: imaging, testing and modelling. England: Woodhead Publishing Ltd.; 2008. 239 – 260.


16. Kuroda S, Yokoyama D, Shinya A, Gomi H, Shinya A. Measuring the effects of water immersion conditions on the durability of fiber-reinforced hybrid composite resin using static and dynamic tests. Dent Mater J. 2012; 31(3): 449 – 457.


17. Rahim TNAT, Mohamad D, Akil HM, Rahman IA. Water sorption characteristics of restorative dental composites immersed in acidid drinks. Dent Mater J. 2012; 28: e63 – e70.


18. Prejmerean C, Buruiana T, Nunes T, Moldovan M, Colceriu L. Biocomposites based on new monomer systems reinforced with micro/ nanoparticles and glass fibers, dalam Cuppoletti J. Metal, Ceramic and Polymeric Composites for Various Uses. Croatia: InTech; 2011. 239264.


19. McCabe JF, Walls AWG. Applied dental materials 9th ed. Hongkong: Blackwell Publishing Ltd.; 2008. 195 – 224.


20. Gajewski VES, Pfeifer CS, Froes-Salgado NRG, Boaro LCC, Braga RR. Monomers used in resin composites: degree of conversion, mechanical properties, and water sorption/solubility. Braz Dent J. 2012; 23(5): 508 – 514.


21. ISO 10477. Dentistry-Polymer-Based crown and bridge materials 2nd ed. International Organization for Standarization. Switzerland: Geneva; 2004.


22. Ellakwa A, Shortall A, Marquis P. Influence of fibre position on the flexural properties and strain energy of a fibre-reinforced composite. J Oral Rehabil. 2003; 30: 679 – 682.


23. Anusavice KJ. Phillips’ science of dental materials 11th ed. St.Louis: Saunders; 2003. 89 – 90.


24. Lončar A, Vojvodić D, Jerolimov V, Komar D, Žabarović D. Fibre reinforced polymer part II: effect on mechanical properties. Acta Stomatol Croat. 2008; 42(1): 49 – 63.


25. Antonucci JM, Dickens SH, Fowler BO, Xu HHK, McDonough WG. Chemistry of silanes: interfaces in dental polymers and composites. J Res Natl Inst Stand Technol. 2005; 110(5): 541 – 558.


26. Gonçalves F, Boaro LCC, Miyazaki CL, Kawano Y, Braga RR. Influence of polymeric matrix on the physical and chemical properties of experimental composites. Braz Oral Res. 2015; 29(1): 1 – 7.



DOI: https://doi.org/10.22146/majkedgiind.17137

Article Metrics

Abstract views : 2817 | views : 3917

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Majalah Kedokteran Gigi Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


 

 View My Stats


real
time web analytics