Phytochemical Properties, Antioxidant, and Cytotoxicity Activity of Knobweed (Hyptis capitata) from South Sulawesi, Indonesia
Nelsiani To'bungan(1*), Stefani Santi Widhiastuti(2), Fitriana Nur Laissya Hida(3), I Wayan Swarautama Mahardhika(4)
(1) Faculty of Biotechnology, Universitas Atma Jaya Yogyakarta. Jl. Babarsari, Sleman 55281, Yogyakarta, Indonesia
(2) Faculty of Biotechnology, Universitas Atma Jaya Yogyakarta. Jl. Babarsari, Sleman 55281, Yogyakarta, Indonesia
(3) IndBioTech Research Team, Laboratory of Industrial Biotechnology, Faculty of Biotechnology, Universitas Atma Jaya Yogyakarta, 55281, Yogyakarta, Indonesia
(4) IndBioTech Research Team, Laboratory of Industrial Biotechnology, Faculty of Biotechnology, Universitas Atma Jaya Yogyakarta, 55281, Yogyakarta, Indonesia
(*) Corresponding Author
Abstract
Hyptis capitata Jacq. known as Sumambu plants in Sulawesi, has phytopharmaceutical importance. H. capitata extracts were evaluated for their phytochemical properties, antioxidant activity, and cytotoxicity. Using the maceration yielded five types of extracts: root chloroform (RC), root methanol (RM), leaf chloroform (LC), leaf methanol (LM), and leaf ethanol (LE). Phytochemical properties were identified by qualifying procedure and digital image analysis for quantifying Red-Green-Blue (RGB) percentage and hex colour code. 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay was used to determine the half-maximal inhibitory concentration (IC50). Cytotoxicity screening of each extract was performed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against HeLa and 4T1 cells. Gas Chromatography-Mass Spectrometry (GC-MS) assay was used to identify the phytochemical compounds of the extracts with the most promising potential. Alkaloids were the major constituents of the phytochemicals of RC, RM, LE, LC, and LM. RM and LM have potency and weak free radical scavenging activities, with IC50 value 31.08 and 58.03 µg/mL, respectively. The IC50 of RC and RM against HeLa cells were 84.21 ± 0.63 and 172.10 ± 02.90 µg/mL, respectively. Meanwhile, the cytotoxicity of RC and RM against 4T1 cells were 86.42 ± 0.80 and 182.82 ± 7.00 µg/mL, respectively. It means RC and RM exhibit a moderate level of cytotoxicity in both HeLa and 4T1 cells. LM shows moderate cytotoxicity, but it is limited to 4T1 cells with an IC50 value of 181.86 ± 12.68 µg/mL. The cytotoxicity level of extracts was lower than doxorubicin. Campesterol, ferruginol, stigmasterol, cis-13-octadecenoic acid methyl esters, and methyl palmitate were predicted to play a role in the antioxidant activity and cytotoxicity of RC, RM, and LM. RC, RM, and LM possess the potential for development as anticancer agents. Moreover, RM shows promise as an antioxidant due to its notable radical scavenging activity. Further research is required to explore the cytotoxic effects of RC, RM, and LM on normal cells and to assess their toxicity in experimental animals.
Keywords
References
Abdulrahman, M.D. et al., 2019. In vitro biological investigations on Syzygium polyanthum cultivars. International Journal of Agriculture and Biology, 22(6), pp.1399–1406. doi: 10.17957/IJAB/15.1214
Amarowicz, R. 2007. Tannins: The new natural antioxidants? European Journal of Lipid Science and Technology, 109, pp.549–551. doi: 10.1002/ejlt.200700145.
Anekwe, I. I., et al., 2023. Gas Chromatography-Mass Spectrometry analysis of bioactive compounds of Curcuma longa leaves extract. International Journal of Biological and Chemical Sciences, 17(3), pp.1199–1207. doi: 10.4314/ijbcs.v17i3.34
Audina, M., Yuliet & Khaerati, K., 2018. Anti-inflammatory effectiveness of sumambu leaves ethanol extract (Hyptis capitata Jacq.) on male white rats (Rattus norvegicus L.) Induced with carageenan [Indonesian]. Biocelebes, 12(2), pp.17-23.
Bishayee, A., et al., 2011. Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer. Front Biosci (Landmark Ed), 16(3), pp.980-96. doi: 10.2741/3730.
Cai, C. et al., 2019. Extraction and antioxidant activity of total triterpenoids in the mycelium of a medicinal fungus, Sanghuangporus sanghuang. Scientific Reports, 9(1), pp.1–10. doi: 10.1038/s41598-019-43886-0
Darshani, P. et al., 2022. Anti-viral triterpenes: a review. Phytochem Rev., 21, pp.1761-1842. doi: 10.1007/s11101-022-09808-1.
Dey, P. et al. 2020. Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids). In: Silva AS, Nabavi SF, et al (eds) Recent Advances in Natural Products Analysis, pp.505-567. doi: 10.1016/B978-0-12-816455-6.00015-9.
Elekofehinti, O.O. et al., 2021. Saponins in cancer treatment: Current progress and future prospects. Pathophysiology, 28(2), pp.250–272. doi: 10.3390/pathophysiology28020017
Faizal, A. & Geelen, D., 2013. Saponins and their role in biological processes in plants. Phytochem Rev., 12, pp.877-893. doi: 10.1007/s11101-01309322-4.
Ferreyra, M.L.F., Rius, S.P. & Casati, P., 2012. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Frontiers in Plant Science, 3(222), pp.1-15. doi: doi.org/10.3389/fpls.2012.00222.
Hamed, A. et al., 2020. Methyl palmitate: the naturally occurring cardioprotective agent. Archives of Pharmaceutical Sciences Ain Shams University, 4(1), pp.47–62. doi: 10.21608/aps.2020.2003.1026
Hameed, E. 2012. Phytochemical studies and evaluation of antioxidant, anticancer and antimicrobial properties of Conocarpus erectus L. growing in Taif, Saudi Arabia. Eur J Med Plants, 2 (2), pp.93-112. doi: 10.9734/ejmp/2012/1040.
Hartanti, D. & Budipramana, K., 2020. Traditional antidiabetic plants from Indonesia. Ethnobotany Research and Applications, 19(34),pp.1-24. doi: 10.32859/era.19.34.1-24.
Heinrich, M., Mah, J. & Amirkia, V., 2021. Alkaloids used as medicines: structural phytochemistry meets biodiversity an update and forward look. Molecules, 26(7), pp.1836. doi: 10.3390/molecules26071836.
Hilmi, E. et al., 2021. Tannins in mangrove plants in Segara Anakan Lagoon, Central Java, Indonesia. Biodiversitas, 22(8), pp.3508-3516. doi: 10.13057/biodiv/d220850.
John, R., Sabu, K.R. & Manilal, A., 2022. Chemical composition, antioxidant, and mosquito larvicidal activity of essential oils from Hyptis capitata Jacq. Journal of Experimental Pharmacology, (14), pp.195-204. doi: 10.2147/JEP.S355280.
Kasprzak, M. et al., 2023. Anti-proliferative potential and oxidative reactivity of thermo‑oxidative degradation products of stigmasterol and stigmasterol esters for human intestinal cells. Scientific Reports, 13, pp.7093. doi: 10.1038/s41598-023-34335-0.
Kaur, P., et al., 2012. A mouse model for triple-negative breast cancer tumor-initiating cells (TNBC-TICs) exhibits similar aggressive phenotype to the human disease. BMC Cancer, 12, pp.120. doi: 10.1186/1471-2407-12-120.
Kiziltas, H. et al., 2022. Sahlep (Dactylorhiza osmanica): phytochemical analyses by LC-HRMS, molecular docking, antioxidant activity, and enzyme inhibition profiles. Molecules, 27(20), pp.6907. doi: 10.3390/molecules27206907.
Klomsakul, P., Aiumsubtub, A. & Chalopagorn, P., 2022. Evaluation of antioxidant activities and tyrosinase inhibitory effects of Ginkgo biloba tea extract. The Scientific World Journal, pp.1-7. doi: 10.1155/2022/4806889.
Kopustinskiene, D.M., et al., 2020. Flavonoids as Anticancer Agents. Nutrients, 12;12(2), pp.457. doi: 10.3390/nu12020457.
Krishnamoorthy, K. & Subramaniam, P., 2014. Phytochemical profiling of leaf, stem, and tuber parts of Solena amplexicaulis (Lam.) Gandhi using GC-MS. International Scholarly Research Notices, pp.1-13. doi: 10.1155/2014/567409.
Kumaradewi, D.A.P. et al., 2021. Phytochemical screening and activity test of antioxidant ethanol extract of buni leaves (Antidesma bunius L. Spreng) using dpph method. Jurnal Penelitian Pendidikan IPA, 7(2), pp.275–280. doi: 10.29303/jppipa.v7i2.675
Kumar, S. & Pandey, A.K., 2013. Chemistry and biological activities of flavonoids: an overview. The Scientific World Journal, 2013, 162750. doi: 10.1155/2013/162750.
Kurniawan, R. et al., 2023. The cytotoxicity studies of phytosterol discovered from Rhizophora apiculata against three human cancer cell lines. Journal of Applied Pharmaceutical Science, 13(1), pp.156-162. doi: 10.7324/JAPS.2023.130115.
Kusuma, I.W. et al., 2020. Biological activities and phytochemicals of hyptis capitata grown in east kalimantan, indonesia. Journal of Applied Biology and Biotechnology, 8(2), pp. 58–64. doi: 10.7324/JABB.2020.80210.
Lauson, C.B.N. et al., 2023. Linoleic acid potentiates CD8+ T cell metabolic fitness and antitumor immunity. Cell Metabolism, 35(4), pp.633-650. doi: 10.1016/j.cmet.2023.02.013.
Lee, H. et al., 2021. Metasequoia glyptostroboides potentiates anticancer effect against cervical cancer via intrinsic apoptosis pathway. Scientific Reports, 11, 894. doi: 10.1038/s41598-020-79573-8.
Li, L.S. et al., 2020. Antioxidant and anti-inflammatory properties of Erythroxylum cuneatum alkaloid leaf extract. Heliyon, 6(6), e04141. doi: 10.1016/j.heliyon.2020.e04141
Lohr, M.T. et al., 2016. The status and distribution of non-native plants on the gazetted and territorial islands off the north coast of Western Australia. Conservation Science W. Aust, 10(8), pp.1-74.
Luo, S. et al., 2021. Evaluation on bioactivities of triterpenes from Bergenia emeiensis. Arabian Journal of Chemistry, 14, 103225. doi: 10.1016/j.arabjc.2021.103225.
Maisetta, G. et al., 2019. Tannin profile, antioxidant properties, and antimicrobial activity of extracts from two Mediterranean species of parasitic plant Cytinus. BMC Complementary and Alternative Medicine, 19(1), 82. doi: 10.1186/s12906-019-2487-7
Mugford, S.T. & Osbourn, A., 2013. Saponin synthesis and function. In Isoprenoid synthesis in plants and microorganisms: new concepts and experimental approaches. New York: Springer New York. doi: 10.1007/978-1-4614-4063-5_28.
Nazaruk, J. & Borzym-Kluczyk, M., 2015. The role of triterpenes in the management of diabetes mellitus and its complications. Phytochem Rev., 14, pp.675-690. doi: 10.1007/s11101-014-9369-x.
Nordin, M.L. et al., 2018. In vitro investigation of cytotoxic and antioxidative activities of Ardisia crispa against breast cancer cell lines, MCF-7 and MDA-MB-231. BMC Complementary and Alternative Medicine, 18(1), 87. doi: 10.1186/s12906-018-2153-5.
Panche, A.N. et al., 2016. Flavonoids: an overview. Journal of Nutritional Science, 5, e47. doi: 10.1017/jns.2016.41.
Parbuntari, H. et al., 2018. Preliminary phytochemical screening (qualitative analysis) of cacao leaves (Theobroma cacao L.). EKSAKTA, 19(2), pp.40-45. doi: 10.24036/eksakta/vol19-iss02/142.
Patel, S.S. & Savjani, J.K., 2015. Systematic review of plant steroids as potential anti-inflammatory agents: current status and future perspectives. The Journal of Phytopharmacology, 4(2), pp.121-125. doi: 10.31254/phyto.2015.4212.
Perens E.A., & Shaham, S. 2005. C. elegans daf-6 encodes a patched-related protein required for lumen formation. Dev. Cell, 8, pp.893–906. doi: 10.1016/j.devcel.2005.03.009.
Procházková D, Bousová I, & Wilhelmová N. 2011. Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 82(4), pp.513-23.
Raal, A. et al., 2020. Dragendorff’s reagent: Historical perspectives and current status of a versatile reagent introduced over 150 years ago at the University of Dorpat, Tartu, Estonia. Pharmazie, 75, pp.299-306. doi: 10.1691/ph.2020.0438.
Rai, S. et al., 2021. Plant-derived saponins: a review of their surfactant properties and applications. Sci, 3(4), pp.44. doi:10.3390/sci3040044.
Renda, G. et al., 2022. Immunomodulatory properties of triterpenes. Phytochem Rev., 21, pp.537-563. doi: 10.1007/s11101-021-09785-x.
Reviana, R. et al., 2021. Analysis of antioxidant activity on cocktail honey products as female pre-conception supplements. Gac Sanit., 35(S2), pp.S202-S205. doi: 10.1016/j.gaceta.2021.10.021
Rupa, D. et al., 2017. Identification of secretory structure, histochemistry and phytochemical compounds of medicinal plant Hyptis capitata Jacq. BIOTROPIA, 24(2), pp.94-103. doi: 10.11598/btb.2017.24.2.499
Sabdoningrum, E.K. et al., 2021. Characterization and phytochemical screening of meniran (Phyllanthus niruri Linn) extract's nanoparticles used ball mill method. Pharmacogn J., 13(6), pp.1568-1572. doi: 10.5530/pj.2021.13.200.
Salvador, J.A.R. et al., 2013. Anticancer steroids: linking natural and semi-synthetic compounds. Natural Product Reports, 30(2), pp.324-374. doi: 10.1039/C2NP20082A.
Serrano, J. et al., 2009. Tannins: Current knowledge of food sources, intake, bioavailability and biological effects. Mol Nutr Food Res., 53, pp.S310-S329. doi: 10.1002/mnfr.200900039.
Schoch, C.L. et al., 2020. NCBI taxonomy: a comprehensive update on curation, resources and tools. Database : the journal of biological databases and curation, 2020, baa062. doi: 10.1093/database/baaa062.
Shi, J. et al., 2004. Saponins from edible legumes: chemistry, processing, and health benefits. Journal of Medicinal Food, 7(1), pp.67-78. doi: 10.1089/109662004322984734.
Singh, A.P. & Kumar, S., 2019. Applications of tannins in industry. In Tannins – structural properties, biological properties and current knowledge. IntechOpen, pp.1-19. doi: 10.5772/intechopen.85984.
Srisawat, T. et al., 2013. Phytochemical screening and cytotoxicity of crude extracts of Vatica diospyroides Symington type LS. Trop J Pharm Res, 12(1), pp.71-76. doi: 10.4314/tjpr.v12i1.12.
Sumitha, V. & Mini, I. 2019. Pharmacognostical standardization of Hyptis capitata Jacq. Lamiaceae. Journal of Pharmacognosy and Phytochemistty, 8(3), pp.2791–2796.
Sumitha, V., Mini, I. & Nair, L.S., 2022. Assessment of hepatoprotective activity of Hyptis capitata Jacq. against oxidative stress induced by H2O2. International Journal of Pharmaceutical Sciences and Drug Research, 14(1), pp.43-47. doi: 10.25004/IJPSDR.2022.140106.
Tao, H. et al., 2022. Discovery of on-squalene triterpenes. Nature, 606, pp.414-419. doi: 10.1038/s41586-022-04773-3.
Tariq, S. et al., 2022. Comparative analysis of antioxidants activity of indigenously produced Moringa oleifera seeds extracts. BioMed Research International, pp.1-11. doi: 10.1155/2022/4987929.
To’bungan, N. et al., 2022a. Ethnopharmacology of Hyptis capitata. Plant Science Today, 9(3), pp.593–600. doi: 10.14719/pst.1602.
To’bungan, N. et al., 2022b. Cytotoxicity extract and fraction of knobweed (Hyptis capitata) and its effect on migration and apoptosis of T47D cells. Biodiversitas, 23(1), pp.572-580. doi: 10.13057/biodiv/d230162.
To’bungan, N., Jati, W.N. & Zahida, F., 2022c. Acute toxicity and anticancer potential of knobweed (Hyptis capitata) ethanolic leaf extract and fraction. Plant Science Today, 9(4), pp.955-962. doi: 10.14719/pst.1847.
To’bungan, N., 2023. Antiproliferative and apoptotic effect of Knobweed (Hyptis capitata) root methanol extract on WiDr colorectal cancer cells. Plant Science Today, 10(3), pp.393–398. doi: 10.14719/pst.2379.
Tong, W.Y., 2013. Biotransformation of terpenoids and steroids. In: Ramawat K, JM (eds) Natural Products, pp.2733-2759. doi: 10.1007/978-3-642-22144-6_122
Vidhya, C.S. et al., 2022. Evaluation of in-vitro anti-cancer activity of aqueous extract of the C. maxima seed. International Journal of Health Sciences, 6(S2), pp.7289–7298. doi: 10.53730/ijhs.v6nS2.6788.
Yuce, M. et al., 2023. Conjugated linoleic acid strengthens the apoptotic effect of cisplatin in A549 cells. Prostaglandins & Other Lipid Mediators, 166, 106731. doi: 10.1016/j.prostaglandins.2023.106731
DOI: https://doi.org/10.22146/jtbb.90976
Article Metrics
Abstract views : 1710 | views : 645 | views : 131 | views : 129 | views : 177Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Journal of Tropical Biodiversity and Biotechnology
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editoral address:
Faculty of Biology, UGM
Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
ISSN: 2540-9581 (online)