Induction of Synthetic Polyploids of Porang (Amorphophallus muelerri Blume) and Assessment of Its Genetic Variability Using Morphological Data and RAPD Molecular Marker

https://doi.org/10.22146/jtbb.82238

Suyono Suyono(1), Imey Tamara Indivia(2), Ruri Siti Resmisari(3), Fitriyah Fitriyah(4), Didik Wahyudi(5*)

(1) Plant Physiology Laboratory, Biology Department, Science and Technology Faculty Universitas Islam Negeri Maulana Malik Ibrahim Malang, Jl. Gajayana No.50, Kota Malang, Jawa Timur 65144, Indonesia.
(2) Plant Tissue Culture, Biology Department, Science and Technology Faculty Universitas Islam Negeri Maulana Malik Ibrahim Malang, Jl. Gajayana No.50, Kota Malang, Jawa Timur 65144, Indonesia.
(3) Plant Tissue Culture, Biology Department, Science and Technology Faculty Universitas Islam Negeri Maulana Malik Ibrahim Malang, Jl. Gajayana No.50, Kota Malang, Jawa Timur 65144, Indonesia.
(4) Biology Molecular Laboratory, Biology Department, Science and Technology Faculty Universitas Islam Negeri Maulana Malik Ibrahim Malang, Jl. Gajayana No.50, Kota Malang, Jawa Timur 65144, Indonesia.
(5) Plant Physiology Laboratory, Biology Department, Science and Technology Faculty Universitas Islam Negeri Maulana Malik Ibrahim Malang, Jl. Gajayana No.50, Kota Malang, Jawa Timur 65144, Indonesia.
(*) Corresponding Author

Abstract


This study uses morphological characteristics and RAPD markers to evaluate the polyploidization of synthetic porang. Seeds of triploid porang (2n=2x=26) were soaked in the different colchicine concentrations for 24 hours. After colchicine treatment, the porang seeds were planted to an MS medium that contained 2.2 µM of 6-benzylaminopurine (BAP), then, 40 days after planting in the MS media, the morphology and molecular of synthetic polyploid porang were characterized. For DNA extraction, a total of 100 mg of young leaves of porang plantlet was collected. One way Anova followed by the Duncan test (95%) was performed for phenotypic characterization. The number of different alleles, number of effective alleles, Shannon's information index, diversity, and unbiased diversity were assessed for genetic diversity. Synthetic polyploid porang has a higher total shoot, root, and wider leaves than normal porang. Polyploidy induction also successfully increased the genetic diversity of porang, and the genetic diversity will increase porang adaptability and sustainability of porang cultivation.

 


Keywords


genetically modified organisms;iles-iles;molecular marker;porang mutant;suweg

Full Text:

PDF


References

Afifah, U.A.N., Wiendi, N.M.A. & Maharijaya A. 2020. In vitro polyploidy Induction of patchouli (Pogostemon Cablin Benth.) by colchicine. Journal of Tropical Crop Science, 7(1), pp.37-44. doi: 10.29244/jtcs.7.01.37-44

Aliyev, R.T., Abbasov, M.A. & Mammadov, A.C., 2007. Genetic identification of diploid and tetraploid wheat species with RAPD markers. Turkish Journal of Biology, 31, pp.173-180.

Alkadi, H., Khubeiz, M. & Jbeily, R., 2018. Colchicine : A Review on Chemical Structure and Clinical Usage. Infectious Disorders - Drug Targets, 18(2), pp.105-121. doi: 10.2174/1871526517666171017114901

Atase Perdagangan KBRI Tokyo., 2021. Laporan Analisis Intelijen Bisnis Porang HS : 071440. Atase Perdagangan KBRI Tokyo 2021.

Aversano et al., 2012. Molecular tools for exploring polyploid genomes in plants. International Journal of Molecular Sciences, 13(8), pp. 0316-10335. doi: 10.3390/ijms130810316

Bansa, P., Banga, S. & Banga, S.S., 2012. Heterosis as investigated in terms of polyploidy and genetic diversity using designed Brassica juncea amphiploid and its progenitor diploid species. Plosone, 7(2), p.e29607. doi: 10.1371/journal.pone.0029607.

Bhattarai, K., Kareem, A. & Deng, Z., 2021. In vivo induction and characterization of polyploids in gerbera daisy. Scientia Horticulturae, 282, pp.1-8. doi: 10.1016/j.scienta.2021.110054

Breseghello, F. & Coelho, A.S.G., 2013. Traditional and modern plant breeding methods with examples in rice (Oryza sativa L.). Journal of Agricultural and Food Chemistry, 61, pp. 8277–8286. doi: 10.1021/jf305531j

Chao et al., 2013. Polyploids exhibit higher potassium uptake and salinity tolerance in arabidopsis. Science, 341, pp. 658–659. doi: 10.1126/science.1240561

Comlekcioglu, N. & Ozden, M., 2019. Polyploidy induction by colchicine treatment in golden berry (Physalis peruviana), and effects of polyploidy on some traits. Journal of Animal and Plant Sciences, 29(5), pp.1336-134.

del Pozo, J.C. & Ramirez-Parra, E. 2020., Whole genome duplications in plants: an overview from Arabidopsis. Journal of Experimental Botany, 66(22), pp.6991–7003. doi: 10.1093/jxb/erv432

Ding, M. & Chen, Z.J., 2018. Epigenetic perspectives on the evolution and domestication of polyploid plant and crops. Current Opinion in Plant Biology, 42, pp.37-48.

Eng, W.H. & Ho, W.S., 2019. Polyploidization using colchicine in horticultural plants: A review. Scientia Horticulturae, 246, pp.604-617. doi: 10.1016/j.scienta.2018.11.010

Ekowati, G,., Yanuwiadi, B. & Azrianingsih R., 2015. Sumber glukomanan dari edible Araceae di Jawa Timur. Jurnal Pembanginan dan alam Lestasi, 6(1), pp.32-41.

Fu et al., 2021. Physiological characteristics and genetic diversity of Lilium distichum Nakai autotetraploids. Scientia Horticulturae, 282, p.110012. doi: 10.1016/j.scienta.2021.110012

Guo et al., 2016. An analytical toolkit for polyploid willow discrimination. Scientific Reports, 6, pp.1-8. doi: 10.1038/srep37702

Hammer, O., Harper, D.A.T. & Ryan, P.D., 2001. Past: Paleontological statistics software package for education and data analaysis. Palaeontologia Electronica, 4, pp.1-9.

Julião et al., 2020. Induction of synthetic polyploids and assessment of genomic stability in Lippia alba. Frontiers in Plant Science, 11(292), pp.1-11. doi: 10.3389/fpls.2020.00292

Khamrit, R. & Jongrungklang, N., 2022. In vitro tissue culture techniques and colchicine-induced polyploidy in banana (Musa, AA Group)' Kluai Khai. Asian Journal of Plant Sciences, 21(1), pp.111-118. doi: 10.3923/ajps.2022.111.118

Kundu et al., 2018. In vitro tetraploidization for the augmentation of wedelolactone in Sphagneticola calendulacea (L.) Pruski. Acta Physiologiae Plantarum, 40(12), pp.1–11. doi: 10.1007/s11738-018-2786-5

Li et al., 2018. Konjac glucomannan octenyl succinate (KGOS) as an emulsifier for lipophilic bioactive nutrient encapsulation. Journal of the Science of Food and Agriculture, 98(15), pp.5742-5749. doi: 10.1002/jsfa.9122

Li et al., 2021. Multiple responses contribute to the enhanced drought tolerance of the autotetraploid Ziziphus jujuba Mill. var. spinosa. Cell & Bioscience, 11(119), pp.2-10. doi: 10.1186/s13578-021-00633-1

Lontoh et al., 2019. Yield evaluation of selected clones apomictic iles-iles (Amorphophallus muelleri Blume) on second growing period. Indonesian Journal of Agronomy, 47(2), pp.171-179. doi: 10.24831/jai.v47i2.19445

Madani et al., 2021. Effect of polyploidy induction on natural metabolite production in medicinal plants. Biomolecules, 11(6), p.899. doi: 10.3390/biom11060899

Manzoor et al., 2019. Studies on colchicine induced chromosome doubling for enhancement of quality traits in ornamental plants. Plants, 8(194), pp.2-16. doi:10.3390/plants8070194

Miri, S.M., 2020. Artificial polyploidy in the improvement of horticultural crops. Journal of Plant Physiology and Breeding, 10(1), pp.1-28.

Mtileni, M.P., Venter, N. & Glennon, K.L., 2021. Ploidy differences affect leaf functional traits, but not water stress responses in a mountain endemic plant population. South African Journal of Botany, 138, pp.76-83. doi: 10.1016/j.sajb.2020.11.029

Moghbel, N., Borujeni, M.K. & Bernard, F., 2015. Colchicine effect on the DNA content and stomata size of Glycyrrhiza glabra var.glandulifera and Carthamus tinctorius L. cultured in vitro. Journal of Genetic Engineering and Biotechnology, 13(1), pp.1–6. doi: 10.1016/j.jgeb.2015.02.002

Nurlela et al., 2021. Characterization of glucomannan extracted from fresh porang tubers using ethanol technical grade. Molecule, 16(1), pp.1-8. doi: 10.20884/1.jm.2021.16.1.632

Nikmah, I.A., Azrianingsih, R. & Wahyudi, D., 2016. Genetic diversity of porang populations (Amorphophallus muelleri Blume) in Central Java and West Java based on LEAFY second intron marker. Journal of Tropical Life Science, 6(1), pp.23-27. doi: 10.11594/jtls.06.01.05

Peakall, R. & Smouse, P.E., 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28, pp.2537-2539.

Pereira et al., 2014. Chromosome duplication in Lolium multiflorum Lam. Crop Breeding and Applied Biotechnology, 14, pp.251-255. doi:1590/1984-70332014v14n4n39

Probojati, RT., Wahyudi, D., & Hapsari, L. 2019. Clustering analysis and genome inference of pisang raja local cultivars (Musa Spp.) from Java Island by random amplified polymorphic DNA (RAPD) marker. Journal of Tropical Biodiversity and Biotechnology, 4(2), pp.42-53. doi: 10.22146/jtbb.44047

Roulin et al., 2013. The fate of duplicated genes in a polyploid plant genome. The Plant Journal, 73(1), 143-153. doi: 10.1111/tpj.12026

Ruiz et al., 2020. Synthetic polyploidy in grafted crops. Frontiers in Plant Science, 11, p.540894. doi: 10.3389/fpls.2020.540894

Salma, U., Kundu, S. & Mandal, N., 2017. Artificial polyploidy in medicinal plants: advancement in the last two decades and impending prospects. Journal of Crop Science and Biotechnology, 20(1), 9-19. doi: 10.1007/s12892-016-0080-1

Sattler, M.C., Carvalho, C.R. & Clarindo, W.R., 2016. The polyploidy and its key role in plant breeding. Planta, 243, pp.281-296.

Soltis et al., 2014. Polyploidy and novelty: Gottlieb's legacy. Philosophical Transactions of the Royal Society B, 369, pp.20130351. doi: 10.1098/rstb.2013.0351

Soltis et al., 2015. Polyploidy and genome evolution in plants. Current Opinion in Genetics & Development, 35, pp.119–125. doi: 10.1016/j.pbi.2005.01.001

Song, Q. & Chen, J., 2015. Epigenetic and developmental regulation in plant polyploids. Current Opinion in Plant Biology, 24, pp.101-109. doi: 10.1016/j.pbi.2015.02.007

Talebi et al., 2017. Effect of different antimitotic agents on polyploid induction of anise hyssop (Agastache foeniculum L.). Caryologia, 70, pp.184–193. doi: 10.1080/00087114.2017.1318502

Talei et al., 2020. Improving productivity of steviol glycosides in Stevia rebaudiana via induced polyploidy. Journal of Crop Science and Biotechnology, 23(4), pp.301-309. doi: 10.1007/s12892-020-00038-5

Tammu, R.M., Nuringtyas, T.R. & Daryono, B.S., 2021. Colchicine effects on the ploidy level and morphological characters of Katokkon pepper (Capsicum annuum L.) from North Toraja, Indonesia. Journal of Genetic Engineering and Biotechnology, 19(31), pp.2-8. doi: 10.1186/s43141-021-00131-4

Tester, R.F. & Al-Ghazzewi, F.H., 2013. Mannans dan health, with a special focus on glucomannans. Food Research International, 50, pp.384-391. doi: 10.1016/j.foodres.2012.10.037

Touchell, D.H., Palmer, I.E. & Ranney, T.G., 2020. In vitro ploidy manipulation for crop improvement. Frontiers in Plant Science, 11, p.722. doi: 10.3389/fpls.2020.00722

Wahyudi, D., Azrianingsih, R. & Mastuti R., 2013. Genetic variability of porang populations (Amorphophallus muelleri) in West Java and Central Java based on trnL intron sequences. Journal of Biodiversity and Environmental Science, 3(9), pp.31-41.

Wahyudi, D., Hapsari, L. & Sundari., 2020. RAPD analysis for genetic variability detection of mutant Soybean (Glycine max (L.) Merr). Journal of Tropical Biodiversity and Biotechnology, 5(1), pp.68-77. doi: 10.22146/jtbb.53653

Wibisono et al., 2021. Performance of putative mutants and genetic parameters of Plectranthus amboinicus (L.) through mutation induction with colchicine. AGROSAINSTEK: Jurnal Ilmu dan Teknologi Pertanian, 5(2), pp.89-99.

Wei et al., 2019. Functional trait divergence and trait plasticity confer polyploid advantage in heterogeneous environments. New Phytologist, 221, pp. 2286–2297.

Yang et al., 2017. A review on konjac glucomannan gels: microstructure and application. International Journal of Molecular Sciences, 18(11), pp.2250. doi: 10.3390/ijms18112250

Zahedi et al., 2014. Overproduction of valuable methoxylated flavones in induced tetraploid plants of Dracocephalum kotschyi Boiss. Botanical Studies, 55(22), pp.1-10

Zhang et al., 2018. Induction, identification and characterization of polyploidy in Stevia rebaudiana Bertoni. Plant Biotechnology, 35, pp. 81-86.



DOI: https://doi.org/10.22146/jtbb.82238

Article Metrics

Abstract views : 944 | views : 632

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Journal of Tropical Biodiversity and Biotechnology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editoral address:

Faculty of Biology, UGM

Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia

ISSN: 2540-9581 (online)