Scanning Electron Microscopy Analysis of Tea’s Embryo Axis Explant Cultured on Murashige and Skoog Medium Containing 2,4-Dichlorophenoxyacetic acid
Ratna Dewi Eskundari(1*), Taryono Taryono(2), Didik Indradewa(3), Yekti Asih Purwestri(4)
(1) Department of Biotechnology, Graduate School of Universitas Gadjah Mada. Yogyakarta 55281, Indonesia; Biology Education Study Program, Faculty of Teacher Training and Education, Universitas Veteran Bangun Nusantara, Sukoharjo, 57521, Central Java, Indonesia.
(2) Department of Biotechnology, Graduate School of Universitas Gadjah Mada. Yogyakarta 55281, Indonesia; Department of Agriculture, Faculty of Agriculture, Universitas Gadjah Mada. Yogyakarta 55281, Indonesia; Agrotechnology Innovation Centre, Universitas Gadjah Mada. Yogyakarta, Indonesia
(3) Department of Agriculture, Faculty of Agriculture, Universitas Gadjah Mada. Yogyakarta 55281, Indonesia.
(4) Department of Biotechnology, Graduate School of Universitas Gadjah Mada. Yogyakarta 55281, Indonesia; Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada. Yogyakarta 55281, Indonesia.
(*) Corresponding Author
Abstract
Camellia sinensis L. is an important crop in Indonesia as healthy beverage that contains several secondary metabolism compounds, such as polyphenols and catechins. Tissue culture including somatic embryogenesis and organogenesis has been used for propagating plant for various needs. In this present short-communication, scanning electron microscopic (SEM) analysis of tea was conducted and discussed. This study aimed to investigate surface ultrastructure of TRI2025 embryo axis tea clone cultured on Murashige and Skoog (MS) medium containing 2,4-Dichlorophenoxyacetic acid (2,4-D). The results revealed two different forms of explant’s development, i.e. somatic embryo and transitional form between somatic embryogenesis and organogenesis; or called by “Globular-like Structure” (GLS). Surface ultrastructure analysis of somatic embryo and GLS revealed respectively many stages of somatic embryo development i.e. globular, torpedo, and cotyledon stage, and leaf development form GLS regeneration.
Keywords
Full Text:
PDFReferences
Akula, A. & Dodd, W.A., 1998. Direct somatic embryogenesis in a selected tea clone, “TRI-2025” (Camellia sinensis (L.) O. Kuntze) from nodal explants. Plant Cell Reports, 17(10), pp.804–809. doi: 10.1007/s002990050487.
Ali, R., El-Boubbou, K. & Boudjelal, M., 2021. An easy, fast and inexpensive method of preparing a biological specimen for scanning electron microscopy (SEM). MethodsX, 8(September), p.101521. doi: 10.1016/j.mex.2021.101521.
Aslam, J., Mujib, A. & Sharma, M.P., 2014. Somatic Embryos in Catharanthus roseus: A Scanning Electron Microscopic Study. Notulae Scientia Biologicae, 6(2), pp.167–172. doi: 10.15835/nsb629337.
Caeiro, A. et al., 2022. Induction of Somatic Embryogenesis in Tamarillo (Solanum betaceum Cav.) Involves Increases the Endogenous Auxin Indole-3-Acetic Acid. Plants, 11(10). doi: 10.3390/plants11101347.
Chen, X. et al., 2012. Late-acting self-incompatibility in tea plant (Camellia sinensis). Biologia, 67(2), pp.347–351. doi: 10.2478/s11756-012-0018-9.
Chung, H.H., Chen, J.T. & Chang, W.C., 2007. Plant regeneration through direct somatic embryogenesis from leaf explants of Dendrobium. Biologia Plantarum, 51(2), pp.346–350. doi: 10.1007/s10535-007-0069-x.
Duclercq, J. et al., 2011. De novo shoot organogenesis: From art to science. Trends in Plant Science, 16(11), pp.597–606. doi: 10.1016/j.tplants.2011.08.004.
Ekayanti, M. et al., 2017. Pharmacognostic and phytochemical standardization of white tea leaf (Camellia sinensis L. Kuntze) ethanolic extracts. Pharmacognosy Journal, 9(2), pp.221–226. doi: 10.5530/pj.2017.2.37.
Eskundari, R.D. et al., 2018. Induction of Indirect Somatic Embryogenesis on Embryonic Axis of TRI2025 Tea Clone. Journal of Agricultural Science, 10(10), p.224. doi: 10.5539/jas.v10n10p224.
Eskundari, R.D. et al., 2019. Protein Profile of Tissue Culture of TRI2025 Tea Clone. Biosaintifika: Journal of Biology & Biology Education, 11(1), pp.8–14. doi: 10.15294/biosaintifika.v11i1.17522.
Fernando, J.A. et al., 2007. New insights into the in vitro organogenesis process: The case of Passiflora. Plant Cell, Tissue and Organ Culture, 91(1), pp.37–44. doi: 10.1007/s11240-007-9275-7.
Fraga, H.P.F. et al., 2016. DNA methylation and proteome profiles of Araucaria angustifolia (Bertol.) Kuntze embryogenic cultures as affected by plant growth regulators supplementation. Plant Cell, Tissue and Organ Culture, 125(2), pp.353–374. doi: 10.1007/s11240-016-0956-y.
Gonbad, R.A. et al., 2014. Influence of cytokinins in combination with GAon shoot multiplication and elongation of tea clone iran 100 (camellia sinensis (L.) O. kuntze). The Scientific World Journal, 2014. doi: 10.1155/2014/943054.
Gunasekare, M. & Evans, P., 2000. In Vitro Shoot Organogenesis in Callus Derived from Stem Tissue of Tea (Camellia sinensis L.). S.L.J. Tea Sci, 66, pp.16–26.
Gustian et al., 2022. Somatic Embryogenesis of Soybean Glycine Max (L.) Merr. IOP Conference Series: Earth and Environmental Science, 1097(1). doi: 10.1088/1755-1315/1097/1/012012.
Hadfi, K., Speth, V. & Gunther, N., 1998. Auxin-induced developmental patterns in Brassica juncea embryos. Development, 125(5), pp.879–887. doi: 10.1086/327427.
Kaviani, B., 2013. Somatic Embryogenesis and Plant Regeneration from Embryonic Axes and Cotyledons Explants of Tea (Camellia sinenesis L.). Journal of Ornamental and Horticultural Plants, 3(1), pp.33–38.
Khan, N. & Mukhtar, H., 2019. Tea polyphenols in promotion of human health. Nutrients, 11(1). doi: 10.3390/nu11010039.
Kumar, V. & Chandra, S., 2014. High frequency somatic embryogenesis and synthetic seed production of the endangered species Swertia chirayita. Biologia (Poland), 69(2), pp.186–192. doi: 10.2478/s11756-013-0305-0.
Kumar, V., Moyo, M. & Van Staden, J., 2015. Somatic embryogenesis of Pelargonium sidoides DC. Plant Cell, Tissue and Organ Culture, 121(3), pp.571–577. doi: 10.1007/s11240-015-0726-2.
Lambert, J.D. & Yang, C.S., 2003. Mechanisms of Cancer Prevention by Tea Constituents. The Journal of nutrition, 133(27), pp.3255–3261. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17073577.
Lu, J. et al., 2013. Plant regeneration via somatic embryogenesis and shoot organogenesis from immature cotyledons of Camellia nitidissima Chi. Journal of Plant Physiology, 170(13), pp.1202–1211. doi: 10.1016/j.jplph.2013.03.019.
Mandal, A.K.A. & Datta, S.K., 2005. Direct somatic embryogenesis and plant regeneration from ray florets of chrysanthemum. Biologia Plantarum, 49(1), pp.29–33. doi: 10.1007/s10535-005-0033-6.
Marín-Méndez, W. et al., 2009. Ultrastructure and histology of organogenesis induced from shoot tips of maize (Zea mays, Poaceae). Revista de Biologia Tropical, 57(SUPPL. 1), pp.129–139.
Mondal, T., Bhattacharya, Amita Laxmikumaran, M. & Ahuja, P.S., 2004. Recent Advances of Tea (Camellia Sinensis) Biotechnology. Plant Cell, Tissuea nd Organ Culrure, 76(3), pp.195–254. doi: 10.1023/B.
Mondal, T.K. et al., 1998. Micropropagation of tea (Camellia sinensis (L.) O. Kuntze) using thidiazuron. Plant Growth Regulation, 26(1), pp.57–61. doi: 10.1023/A:1006019206264.
de Morais Oliveira, J.P. et al., 2023. Embryonic abnormalities and genotoxicity induced by 2,4-dichlorophenoxyacetic acid during indirect somatic embryogenesis in Coffea. Scientific Reports, 13(1), pp.1–14. doi: 10.1038/s41598-023-36879-7.
Raghavan, V., 2004. American J of Botany - 2004 - Raghavan - Role of 2 4‐dichlorophenoxyacetic acid 2 4‐D in somatic embryogenesis on. , pp.1743–1756.
Reinhardt, D. et al., 2003. Regulation of phyllotaxis by polar auxin transport. Nature, 426(6964), pp.255–260. doi: 10.1038/nature02081.
Reinhardt, D., Mandel, T. & Kuhlemeier, C., 2000. Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell, 12(4), pp.507–518. doi: 10.1105/tpc.12.4.507.
Rodríguez, S. et al., 1996. Sugarcane somatic embryogenesis: A scanning electron microscopy study. Tissue and Cell, 28(2), pp.149–154. doi: 10.1016/S0040-8166(96)80003-6.
Seran, T.H., Hirimburegama, K. & Gunasekare, M.T.K., 2006. Somatic Embryogenesis from Embryogenic Leaf Callus of Tea { Camellia sinensis ( L .) Kuntze ). , 18, p.2006.
Steinmacher, D.A. et al., 2011. A temporary immersion system improves in vitro regeneration of peach palm through secondary somatic embryogenesis. Annals of Botany, 108(8), pp.1463–1475. doi: 10.1093/aob/mcr033.
Tahardi, J. et al., 2000. Direct somatic embryogenesis and plant regeneration in tea by temporary liquid immersion. , 68(1), pp.1–9.
Ting‐Beall, H.P., Zhelev, D. V. & Hochmuth, R.M., 1995. Comparison of different drying procedures for scanning electron microscopy using human leukocytes. Microscopy Research and Technique, 32(4), pp.357–361. doi: 10.1002/jemt.1070320409.
Zaveri, N.T., 2006. Green tea and its polyphenolic catechins: Medicinal uses in cancer and noncancer applications. Life Sciences, 78(18), pp.2073–2080. doi: 10.1016/j.lfs.2005.12.006.
DOI: https://doi.org/10.22146/jtbb.76451
Article Metrics
Abstract views : 1045 | views : 676Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Journal of Tropical Biodiversity and Biotechnology
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editoral address:
Faculty of Biology, UGM
Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
ISSN: 2540-9581 (online)