Biomass Estimation of Eaglewood (Aquilaria filaria (Oken) Merr.) in the Karst Ecosystem of West Papua
Andes Hamuraby Rozak(1*), Zaenal Mutaqien(2), Destri Destri(3)
(1) Research Center for Plant Conservation and Botanic Gardens, Indonesian Institute of Sciences (LIPI), Cibodas Botanic Gardens
(2) Research Center for Plant Conservation and Botanic Gardens, Indonesian Institute of Sciences (LIPI), Cibodas Botanic Gardens
(3) Research Center for Plant Conservation and Botanic Gardens, Indonesian Institute of Sciences (LIPI), Cibodas Botanic Gardens
(*) Corresponding Author
Abstract
Eaglewood is Indonesia’s important trade commodity in the form of resins from several infected species of Thymelaeaceae. The basis to determine its international trade quota through CITES is derived from the estimated eaglewood-producing species grown in their habitat. This paper aims to estimate the biomass of eaglewood, Aquilaria filaria, in the karst ecosystem of West Papua. We conducted a plot-based method and calculated the biomass of A. filaria using a diameter-based allometric equation and simulated using a bootstrap procedure. The results showed that 15,500 tons of naturally infected eaglewood are estimated in the karst ecosystem of West Papua.
Keywords
Full Text:
PDFReferences
Abràmoff, M.D., Magalhaes, P.J., & Ram, S.J., 2004, Image processing with ImageJ, Biophotonics International, 11(7): pp. 36–42.
Agustini, L., Wahyuno, D., & Santoso, E., 2006, Keanekaragaman jenis jamur yang potensial dalam pembentukan gaharu dari batang Aquilaria spp. [The diversity of fungal potential of stem recipes agarwood Aquilaria spp.], Jurnal Penelitian Hutan dan Konservasi Alam, 3(5): pp. 555–564.
Bartstra, G.-J. ed. 1998, Bird’s Head approaches: Irian Jaya studies, a programme for interdisciplinary research, Rotterdam, Netherlands; Brookfield, VT: Balkema.
Budi, S.W., Santoso, E., & Wahyudi, A., 2010, Identifikasi jenis-jenis fungi yang potensial terhadap pembentukan gaharu dari batang Aquilaria spp.[Identification of the types of fungi that have potential to form agarwood from Aquilaria spp.], Jurnal Silvikultur Tropika, 1: pp. 1–5.
Canty, A., & Ripley, B, 2019., boot: Bootstrap R (S-Plus) function. Available at: https://cran.r-project.org/web/packages/boot/boot.pdf. [Accessed July 25, 2019].
Chave, J. et al., 2009, Towards a worldwide wood economics spectrum, Ecology Letters, 12(4): pp. 351–366.
Chave, J. et al., 2014, Improved allometric models to estimate the aboveground biomass of tropical trees, Global Change Biology, 20(10): pp. 3177–3190.
CITES, 2017, Appendices I, II and III the Convention on International Trade in Endangered Species of Wild Fauna and Flora, Available at: https://cites.org/sites/default/files/eng/app/2017/E-Appendices-2017-10-04.pdf [Accessed July 25, 2019].
Destri et al., 2019, Distribusi dan Populasi Tumbuhan Penghasil Gaharu di Kawasan Sorong Raya, Papua Barat, Indonesia [Distribution and Population of Agarwood Producing Plants in the Sorong Raya Region, West Papua, Indonesia], In Proseding Seminar Nasional Pemanfaatan Tumbuhan dan Satwa Liar, pp. 26–32. Cibinong: Pusat Penelitian Biologi LIPI
Destri, Mutaqien, Z., & Rozak, A.H., 2020, Posisi gaharu dalam struktur komunitas hutan dan penurunan potensinya di Papua Barat [The position of gaharu in forest community structure and its decreasing potential in West Papua], Jurnal Penelitian Kehutanan Wallacea, 9(1): pp. 1–12.
DiCiccio, T.J., & Efron, B., 1996, Bootstrap confidence intervals, Statistical Science, 11(3): pp. 189–212.
Donovan, D., & Puri, R., 2004, Learning from traditional knowledge of non-timber forest products: Penan Benalui and the autecology of Aquilaria in Indonesian Borneo. Ecology and Society, 9(3): pp. 3.
Feldpausch, T.R. et al., 2012, Tree height integrated into pantropical forest biomass estimates, Biogeosciences, 9(8): pp. 3381–3403.
Gibson, I.A.S., 1977, The role of fungi in the origin of oleoresin deposits (Agaru) in the wood of Aquilaria agallocha Roxb, Bano Biggyan Patrika, 6: pp. 16–26.
Hou, D., 1960, Flora Malesiana: Thymeleaceae. Leiden, The Netherlands: Noordhoff-Kolff.
Mohamed, R. ed., 2016, Agarwood: science behind the fragrance. New York, NY: Springer Berlin Heidelberg. Available at: https://link.springer.com/book/10.1007%2F978-981-10-0833-7. [Accessed July 25, 2019].
Schneider, C.A., Rasband, W.S., & Eliceiri, K.W., 2012, NIH image to ImageJ: 25 years of image analysis, Nature Methods, 9(7): pp. 671–675.
Slik, J.W.F., 2006, Estimating species-specific wood density from the genus average in Indonesian trees, Journal of Tropical Ecology, 22(04): pp. 481.
Soehartono, T., & Newton, A.C., 2000, Conservation and sustainable use of tropical trees in the genus Aquilaria I. Status and distribution in Indonesia, Biological Conservation, 96(1): pp. 83–94.
Soehartono, T., & Newton, A.C., 2002, The gaharu trade in Indonesia: Is it sustainable? Economic Botany, 56(3): pp. 271–284.
Zanne, A.E. et al., 2009, Data from: Towards a worldwide wood economics spectrum. Available at: https://doi.org/10.5061/dryad.234.
Zhang, L., Brockelman, W.Y., & Allen, M.A., 2008, Matrix analysis to evaluate sustainability: The tropical tree Aquilaria crassna, a heavily poached source of agarwood, Biological Conservation, 141(6): pp. 1676–1686.
DOI: https://doi.org/10.22146/jtbb.59221
Article Metrics
Abstract views : 3020 | views : 2639Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Journal of Tropical Biodiversity and Biotechnology
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editoral address:
Faculty of Biology, UGM
Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
ISSN: 2540-9581 (online)