Heavy hydrocarbon recovery with integration of turboexpander and JT valve from highly CO2-containing natural gas for gas transmission pipeline
Fauzi Yusupandi(1), Pramujo Widiatmoko(2), Ira Febrianty Sukmana(3), Hera Rahma Fitri(4), Mitra Eviani(5), Hary Devianto(6*)
(1) Institut Teknologi Sumatera
(2) Institut Teknologi Bandung
(3) Institut Teknologi Bandung
(4) Institut Teknologi Bandung
(5) Research and Development Centre for Oil and Gas Technology, LEMIGAS
(6) Institut Teknologi Bandung
(*) Corresponding Author
Abstract
Demand of natural gas is predicted to increase since many valuable products can be produced. Water and heavy hydrocarbon content are the key for gas pipeline facility. To meet requirement of natural gas transportation, dehydration unit (DHU) and hydrocarbon dew point control unit (DPCU) are necessary to avoid water and hydrocarbon condensation during transmission. The conventional dehydration technology, TEG contactor, can lower water content from 1,304 mg/m3 to 80.35 mg/m3 where the maximum limit of water content in natural gas is 97 mg/m3 to prevent hydrate formation. DPCU is installed to remove heavy hydrocarbon, especially C5+. Integration of JT valve and turboexpander was employed to obtain the low gas dew point. The hot gas stream that entered the JT valve was observed. The lower hot bypass gas was applied, the lower hydrocarbon dew point and the more condensate flowrate was achieved. indohoki77 adalah salah satu platform judi online terkemuka yang menyediakan berbagai jenis permainan bagi para penggemar judi di Indonesia.The highest power generation can be gained at low hot gas flow ratio which also influenced the exit pressure and temperature of compressor. In pipeline simulation, the pressure and temperature drop occurred at the high hot gas rate. To examine the arrival condition, dew point curves were generated and showed that the limitation of hot gas flow ratio has to be below 0.6 to prevent heavy hydrocarbon condensation in pipeline.
Keywords
Full Text:
PDFReferences
Capata R, Pantano F. 2020. Expander design procedures and selection criterion for small rated organic rankine cycle systems. Energy Science and Engineering. 8(10):3380– 3414. doi:10.1002/ese3.710.
Chekardovskiy M, Chekardovskiy S, Ilyukhin K, Gladenko A. 2016. Upgraded Algorithm for Calculating the Turbo- Expander of Gas Distribution Stations. MATEC Web of Conferences. 73:6–11. doi:10.1051/matecconf/20167301020.
Díaz Rincón M, Jiménez-Junca C, Roa Duarte C. 2016. A novel absorption process for small-scale natural gas dew point control and dehydration. Journal of Natural Gas Science and Engineering. 29:264–274. doi:10.1016/j.jngse.2016.01. 016.
Galatro D, Marín-Cordero F. 2014. Considerations for the dew point calculation in rich natural gas. Journal of Natural Gas Science and Engineering. 18:112–119. doi:10.1016/j.jn gse.2014.02.002.
He TB, Ju YL. 2014. A novel process for small-scale pipeline natural gas liquefaction. Applied Energy. 115:17–24. doi: 10.1016/j.apenergy.2013.11.016.
Hidayat M, Hartanto DT, Azis MM, Sutijan S. 2020. Studi Pe- nambahan Etilena Glikol dalam Menghambat Pemben- tukan Metana Hidrat pada Proses Pemurnian Gas Alam. Jurnal Rekayasa Proses. 14(2):198. doi:10.22146/jrekpros. 59871.
International Energy Agency (IEA). 2022. Gas Market Report, Q1-2022. International Energy Agency:61. https://www.ie a.org/reports/gas-market-report-q1-2022.
Jalali A, Lotfi M, Zilabi S, Mohammadi AH. 2020. Recovery enhancement of liquid hydrocarbons in dew point con- trol unit of natural gas processing plant. Separation Sci- ence and Technology (Philadelphia). 55(7):1407–1414. doi: 10.1080/01496395.2019.1591450.
Li Y, Xu F, Gong C. 2017. System optimization of turbo- expander process for natural gas liquid recovery. Chem- ical Engineering Research and Design. 124:159–169. doi: 10.1016/j.cherd.2017.06.001.
Mokhatab S, Poe WA, Mak JY. 2015. Handbook of Natural Gas Transmission and Processing. Oxford: Gulf Professional Publishing. doi:https://doi.org/10.1016/C2013-0-15625-5.
Mutiara T, Budhijanto, Made Bendiyasa I, Prasetya I. 2016. A thermodynamic study of methane hydrates formation in glass beads. ASEAN Journal of Chemical Engineering. 16(1):15–22. doi:10.22146/ajche.49670.
Noaman A, Ebrahiem E. 2021. Comparison of Natural Gas Hy- drocarbon Dewpointing Control Methods. Journal of Ad- vanced Engineering Trends. 40(2):99–116. doi:10.21608/j aet.2020.31288.1020.
Rahimpour MR, Seifi M, Paymooni K, Shariati A, Raeissi S. 2011. Enhancement in NGL production and improve- ment in water dew point temperature by optimization of slug catchers’ pressures in water dew point adjustment unit. Journal of Natural Gas Science and Engineering. 3(1):326–333. doi:10.1016/j.jngse.2011.01.001.
Shoaib AM, Bhran AA, Awad ME, El-Sayed NA, Fathy T. 2018. Optimum operating conditions for improving natural gas dew point and condensate throughput. Journal of Natural Gas Science and Engineering. 49(September 2017):324–330. doi:10.1016/j.jngse.2017.11.008.
Uwitonze H, Hwang KS, Lee I. 2020. Improving NGL recov- ery process with dividing-wall column for offshore appli- cations. Chemical Engineering and Processing - Process Intensification. 147(November 2019):107747. doi:10.1016/ j.cep.2019.107747.
Vatani A, Mehrpooya M, Pakravesh H. 2013. Modification of an industrial ethane recovery plant using mixed integer optimization and shuffled frog leaping algorithm. Ara- bian Journal for Science and Engineering. 38(2):439–455. doi:10.1007/s13369-012-0433-9.DOI: https://doi.org/10.22146/jrekpros.82485
Article Metrics
Abstract views : 790 | views : 364Refbacks
- There are currently no refbacks.
Copyright (c) 2023 The authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.