Peningkatan Produksi Biogas dari Palm Oil Mill Effluent (POME) dengan Fluidisasi Media Zeolit Termodifikasi pada Sistem Batch
Firda Mahira Alfiata Chusna(1*), Melly Mellyanawaty(2), Estin Nofiyanti(3)
(1) Program Studi Teknik Kimia, Fakultas Teknologi Industri, Universitas Ahmad Dahlan Kampus IV, Jl Ringroad Selatan Bantul Yogyakarya 55191
(2) Departemen Teknik Kimia, Fakultas Teknik, Universitas Gadjah Mada Jl Grafika No. 2 Kampus UGM, Yogyakarta, 55281Jl Grafika No. 2 Kampus UGM, 55281 Yogyakarta
(3) Program Studi Teknik Lingkungan, Fakultas Teknik Universitas Muhammadiyah Tasikmalaya Jl. Tamansari km. 2,5, Mulyasari Tasikmalaya 4616,
(*) Corresponding Author
Abstract
The production of crude palm oil (CPO) in Indonesia tends to increase over time. Palm oil mill effluent (POME) is the wastewater generated from the palm oil mill process with high organic content. POME is a potential source for anaerobic digestion due to its high organic content. The challenge of POME treatment using an anaerobic process is to enhance biogas production with high soluble chemical oxygen demand (sCOD) removal efficiency. The purpose of this study was to evaluate the effect of selected trace elements addition onto zeolite as immobilization media to the anaerobic digestion of POME in a fluidized batch system. Natural zeolite was used as the medium to immobilize microorganisms in an anaerobic fluidized bed reactor (AFBR). This study used three trace elements impregnated to natural zeolites, i.e. Ni2+, Zn2+, Mg2+. The result shows that Ni2+ and Zn2+improve the methanogenesis process, prevent the accumulation of VFA as an intermediate product and increase the methane (biogas) production. Meanwhile, Mg2+ only reduced sCOD significantly but it did not affect methane production. Fluidization enhanced the performance of the POME anaerobic digestion process. The fluidization provide a positive effect to enhance biogas production and sCOD removal. The efficiency of sCOD removal in the entire reactors were 80.82%; 81.77%; 75.89% for AFBR-Ni; AFBR-Zn and AFBR-control respectively. The total volume of methane produced by the three AFBR were 163,04; 136,42; 62,79 (in ml CH4 / g sCOD) for AFBR-Ni; AFBR-Zn and AFBR-control, respectively.
A B S T R A K
Produksi crude palm oil (CPO) di Indonesia cenderung meningkat seiring bertambahnya waktu. Palm oil mill effluent (POME) adalah air limbah yang dihasilkan dari proses penggilingan kelapa sawit dengan kandungan organik yang tinggi. Tantangan dalam mengolah POME menggunakan proses peruraian anaerobik adalah untuk meningkatkan produksi biogas dengan efisiensi penurunan soluble chemical oxygen demand (sCOD) yang tinggi. Tujuan dari penelitian ini adalah mengevaluasi pengaruh penambahan trace element terseleksi pada media imobilisasi zeolit terhadap proses peruraian anaerobik limbah POME dengan sistem batch terfluidisasi. Zeolit alam berperan sebagai media imobilisasi mikroorganisme dalam anaerobic fluidized bed reactor (AFBR). Penelitian ini menggunakan tiga trace element yang diimpregnasikan pada zeolit alam yaitu Ni2+, Zn2+, Mg2+. Hasil penelitian menunjukkan bahwa Ni2+ dan Zn2+ sebagai trace element dapat meningkatkan proses metanogenesis dan mencegah akumulasi VFA sebagai produk antara serta meningkatkan produksi gas metana (biogas). Mg2+ sebagai trace element menurunkan sCOD dengan cukup signifikan namun tidak diimbangi dengan banyaknya metana yang dihasilkan. Fluidisasi meningkatkan performa dari proses peruraian anaerobik POME. Proses fluidisasi memberi pengaruh positif dalam meningkatkan produksi biogas dan soluble chemical oxygen demand (sCOD) removal. Nilai sCOD removal yaitu 80,82%; 81,77%; 75,89% berturut-turut untuk AFBR-Ni; AFBR-Zn dan AFBR-kontrol. Total volume metana yang dihasilkan oleh ketiga AFBR yaitu 163,04; 136,42; 62,79 (dalam ml CH4 / g sCOD) berturut-turut untuk AFBR-Ni; AFBR-Zn dan AFBR-kontrol.
Keywords
Full Text:
PDFReferences
Abass, O., Alade., Ahmad, T., Jameel., Suleyman, A., Muyibi., Mohamed, I., Abdul Karim and Md. Zahangir Alam., 2011, Application of semifluidized bed bioreactor as novel bioreactor system for the treatment of palm oil mill effluent (POME), Afr. J. Biotechnol., 10(81), 18642-18648.
Ahmad, A.L., Sumathi, S., and Hameed, B.H., 2005, Adsorption of residue oil from palm oil mill effluent using powder and flake chitosan: equilibrium and kinetic studies, Water Res., 39, 2483–2494.
Borja, R., and Banks, C. J., 1994, Treatment of palm oil mill effluent by upflow anaerobic filtration, J. Chem. Tech. Biotechnol., 61(2), 103-109.
Chernicaro, C. A. L., 2007, Biological Wastewater Treatment Series : Anaerobic Reactors, IWA publishing, London.
Chusna, F.M.A., Mellyanawaty, M., Cahyono, R.B., and Budhijanto, W., 2018, Cation modifcation of zeolite as microbial immobilization media in anaerobic digestion process of palm oil mill efuent (POME), Proceeding of SEATUC, pp. 616–621.
Deublein, D.., 2008, Biogas from Waste and Renewable Resources, Wiley-VCH Verlag GmbH and Co. KGaA., Germany.
Facchin, V., Cavinato, C., Fatone, F., Pavan, P., Cecchi, F., and Bolzonella, D, 2013. Effect of trace element supplementation on the mesophilic anaerobic digestion of foodwaste in batch trials : The influence of inoculum origin, Biochem. Eng. J., 70, 71–77.
Irvan, B., Batubara, F., and Daimon, H., 2018, The minimum requirements for nickel and cobalt as trace metals in thermophilic biogas fermentation of palm oil mill efuents, Oriental J. Chem., 34 (3), 1278–1282.
Izzah, N., Aziz, H. A., and Hanafiah, M. M., 2018, Test anaerobic digestion of palm oil mill effluent (POME) using bio-methane potential (BMP) test, AIP Conference Proceedings, 1940.
Lee, D., Lee, S., Bae, J., Kang, J., Kim, K., Rhee, S., Park, J., Cho, J., Chung, J., Seo, D., 2015, Effect of volatile fatty acid concentration on anaerobic degradation rate from field anaerobic digestion facilities treating food waste leachate in South Korea., Journal of Chemistry, 2015, 1–8.
Mellyanawaty, M., Chusna, F.M.A., Sudibyo, H., Nurjanah, N. and Budhijanto, W., 2018, Influence of nutrient impregnated into zeolite addition on anaerobic digestion of palm oil mill effluent (POME), IOP Conf. Ser. Mater. Sci. Eng., 316 (1).
Mellyanawaty, M., Chusna, F.M.A., Nofiyanti, E. and Budhijanto, W., 2019, proses peruraian anaerobik palm oil mill effluent dengan media zeolit termodifikasi, Jurnal Rekayasa Proses, 13 (1), 16–23.
Montalvo, S., Guerrero, L., Borja, R., Sánchez, E., Milán, Z., Cortés, I., and De, M. A., 2012, Applied Clay Science Application of natural zeolites in anaerobic digestion processes: A review. Appl. Clay Sci., 58, 125–133.
Azis, M.,. Sudibyo, H., and Budhijanto W., 2018, Modeling lab-sized anaerobic fluidized bed reactor (AFBR) for palm oil mill effluent (POME) treatment: from batch to continuous reactors, IOP Conf. Ser. Mater. Sci. Eng., 316, 012072.
Ohimain, E.I., and Izah, S.C., 2014, Potential of biogas production from palm oil mills' effluent in Nigeria. Sky J. Soil. Sci. Environ. Manag., 3(5), 50–58.
Poh, P.E., and Chong, M.F., 2009, Development of anaerobic digestion methods for palm oil mill effluent (POME) treatment, Bioresour. Technol., 100, 1–9.
Purnomo, C.W., Mellyanawaty, M. and Budhijanto, W., 2017, Simulation and experimental study on iron impregnated microbial immobilization in zeolite for production of biogas, Waste and Biomass Valorization, 8 (7), 2413-2421.
Setyowati, P.A.H., Halim, L., Mellyanawaty, M., Sudibyo, H., and Budhijanto, W., 2017, Anaerobic treatment of palm oil mill efuent in batch reactor with digested biodiesel waste as starter and natural zeolite for microbial immobilization, AIP Conference Proceedings, 1840.
Sumathi, S., Chai, S. P., and Mohamed, A. R., 2008, Utilization of oil palm as a source of renewable energy in Malaysia, Renewable and Sustainable Energy Rev., 12(9), 2404–2421.
Walker, M., Zhang, Y., Heaven, S., and Banks, C., 2009, Potential errors in the quantitative evaluation of biogas production in anaerobic digestion processes, Bioresour. Technol.,100, 6339-6346.
Zandvoort, M.H., and Van Hullesbuch, E.D., 2006, Granular sludge in full scale anaerobic bioreactor : trace element content and deficiencer, Enzyme Microb. Technol., 39(2), 337-346.
DOI: https://doi.org/10.22146/jrekpros.56133
Article Metrics
Abstract views : 8712 | views : 3818Refbacks
- There are currently no refbacks.
Copyright (c) 2020 The authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.