Kinetika Pembentukan Struvite Kristal Menggunakan Zeolit Alam sebagai Adsorben pada Aeration Cone Column Crystallizer
Eko Ariyanto(1*), Yuyun Niyati(2), Dian Kharismadewi(3), Robiah Robiah(4)
(1) Program Studi Magister Teknik Kimia, Program Pascasarjana, Universitas Muhammadiyah Palembang, Jl. Ahmad Yani 13 Ulu Palembang
(2) Program Studi Magister Teknik Kimia, Program Pascasarjana, Universitas Muhammadiyah Palembang, Jl. Ahmad Yani 13 Ulu Palembang
(3) Program Studi Magister Teknik Kimia, Program Pascasarjana, Universitas Muhammadiyah Palembang, Jl. Ahmad Yani 13 Ulu Palembang
(4) Program Studi Teknik Kimia, Program Pascasarjana, Universitas Muhammadiyah Palembang, Jl. Ahmad Yani 13 Ulu Palembang
(*) Corresponding Author
Abstract
Wastewater from the fertilizer industry contains a high concentration of PO43- and NH4+. Those ions formed deposits that frequently clogged the conduits and reduced the pump efficiency of the wastewater treatment plant. A high concentration of PO43- and NH4+ in this wastewater can be used as a secondary source of PO43- fertilizer through the recovery process into struvite compounds (MgNH4PO4.6H2O). In this research, Struvite was crystallized in Aeration Cone Column Crystallizer (ACCC) with Magnesium modified natural Zeolite (Zeo-Mg) as adsorbent. Research also has been done using the Batch process, and the results were used as basis variables in the ACCC system. Effects of Zeolite activation, amounts of Zeo-Mg (10 – 30 g), PO43- and NH4+reactant ratio (1:1 – 1:3), pH (6 – 9), and reaction time (0 – 60 minutes) to the removal percentage of PO43- were used as research parameters that analyzed in struvite crystallization process. Zeo-Mg and struvite produced were analyzed using scanning electron microscopy and energy dispersive X-ray spectroscopy. Research results in the ACCC system with Zeo-Mg as adsorbent showed that the percentage of PO43- removal was 65% in 16 minutes and followed pseudo-first-order reaction kinetics with a reaction rate constant of 0.21 min-1. The PO43- removal reached equilibrium at pH 8.10 after 28 minutes. Simultaneous removal of PO43- to formed struvite crystals using Zeo-Mg as an adsorbent and without the addition of Mg ions solution in the ACCC system is a novel process in wastewater treatment. Moreover, this PO43- recovery process can be implemented in the industrial scale due to the practical operation.
A B S T R A K
Air limbah industri pupuk banyak mengandung PO43- dan NH4+. Ion-ion ini membentuk endapan yang seringkali menyumbat aliran pipa yang menyebabkan penurunan efisiensi pompa di instalasi pengolahan air limbah. Kandungan PO43- dan NH4+ berkonsentrasi tinggi ini dapat dijadikan sumber sekunder untuk membuat pupuk PO43- dengan melakukan recovery sebagai senyawa struvite (MgNH4PO4.6H2O). Pada penelitian ini, struvite dibentuk menjadi kristal menggunakan Aeration Cone Column Crystallizer (ACCC) dengan adsorben zeolit alam yang telah dimodifikasi menggunakan ion magnesium (Zeo-Mg). Penelitian juga dilakukan dengan menggunakan proses batch, yang hasilnya dijadikan basis variabel pada sistem ACCC. Pengaruh pengaktifan zeolit, penambahan Zeo-Mg (10–30 g), rasio reaktan PO43- dan NH4+ (1:1–1:3), perubahan pH larutan (6–9), dan lamanya waktu reaksi (0–60) menit terhadap persentase penyisihan PO43- menjadi parameter yang dianalisis pada proses kristalisasi struvite. Zeo-Mg dan struvite yang dihasilkan dianalisis menggunakan scanning electron microscopy dan energy dispersive X-ray spectroscopy. Penelitian menggunakan ACCC menghasilkan persentase penyisihan PO43- dengan adsorben Zeo-Mg sebesar 65% dalam 16 menit dan mengikuti persamaan kinetika reaksi orde satu, dengan konstanta laju reaksi 0,21 min-1. Penyisihan PO43- mencapai kesetimbangan pada pH 8,10 setelah 28 menit. Proses pemisahan PO43- dengan adsorben Zeo-Mg menjadi struvite secara berkesinambungan pada sistem ACCC merupakan proses baru pengolahan air limbah. Selain itu, proses pemanfaatan kembali PO43- ini dapat diterapkan ke dalam skala industri karena kemudahan dalam pengoperasiannya.
Keywords
Full Text:
PDFReferences
Abbona, F., Lundager Madsen, H.E. and Boistelle, R., 1982, Crystallization of two magnesium phosphates, struvite and newberyite: Effect of pH and concentration, J. Cryst. Growth, 57 (1), 6–14.
Agrawal, S., Guest, J.S. and Cusick, R.D., 2018, Elucidating the impacts of initial supersaturation and seed crystal loading on struvite precipitation kinetics, fines production, and crystal growth, Water Res., 132, 252–259.
Ariyanto, E., Ang, H.M. and Sen, T.K., 2014, Impact of various physico-chemical parameters on spontaneous nucleation of struvite (MgNH4PO4.6H2O) formation in a wastewater treatment plant: kinetic and nucleation mechanism, Desalin. Water Treat., 52 (34–36), 6620–6631.
Ariyanto, E., Sen, T.K. and Ang, H.M., 2014, The influence of various physico-chemical process parameters on kinetics and growth mechanism of struvite crystallisation, Adv. Powder Technol., The Society of Powder Technology Japan, 25 (2), 682–694.
Bhuiyan, M.I.H., Mavinic, D.S. and Beckie, R.D., 2008, Nucleation and growth kinetics of struvite in a fluidized bed reactor, J. Cryst. Growth, 310 (6), 1187–1194.
Booram, C. V., Smith, R.J. and Hazen, T.E., 1975, Crystalline phosphate precipitation from anaerobic animal waste treatment lagoon liquors, Trans. Am. Soc. Agric. Eng., 18 (2), 340–343.
Buchanan, J.R., Mote, C.R. and Robinson, R.B., 1994, Thermodynamics of struvite formation, Trans. Am. Soc. Agric. Eng., 37 (2), 617–621.
Burns, J.R. and Finlayson, B., 1982, Solubility product of magnesium ammonium phosphate hexahydrate at various temperatures, J. Urol., The American Urological Association Education and Research, Inc., 128 (2), 426–428.
Byden, S., Lind, B. and Ban, Z., 2000, Nutrient recovery from human urine by struvite crystallization with ammonia adsorption on zeolite and wollastonite, Bioresour. Technol., 73, 169–174.
Casoni, S.M., Purnomo, C.W. and Hidayat, M., 2018, The efficiency of phosphorus removal of synthetic wastewater through struvite crystallization in an aerated fluidized bed reactor, Key Eng. Mater., 789, 59–63.
Le Corre, K.S., Valsami-Jones, E., Hobbs, P. and Parsons, S.A., 2005, Impact of calcium on struvite crystal size, shape and purity, J. Cryst. Growth, 283 (3–4), 514–522.
Le Corre, K.S., Valsami-Jones, E., Hobbs, P. and Parsons, S.A., 2009, Phosphorus recovery from wastewater by struvite crystallization: A review, Crit. Rev. Environ. Sci. Technol., 39, 433-477 available at:https://doi.org/10.1080/10643380701640573.
Daniel Mamais, Paul A. Pitt, Yao Wen Cheng, J.L. and D.J., 1994, Determination of ferric chloride dose to control struvite precipitation in anaerobic sludge digesters, Water Environ. Res., 66 (7), 912–918.
Durrant, A.E., Scrimshaw, M.D., Stratful, I. and Lester, J.N., 1999, Review of the feasibility of recovering phosphate from wastewater for use as a raw material by the phosphate industry, Environ. Technol., 20 (7), 749–758.
Frawley, P.J., Mitchell, N.A., Ó'Ciardhá, C.T. and Hutton, K.W., 2012, The effects of supersaturation, temperature, agitation and seed surface area on the secondary nucleation of paracetamol in ethanol solutions, Chem. Eng. Sci., 75, 183–197.
Huang, H., Xiao, D., Pang, R., Han, C. and Ding, L., 2014, Simultaneous removal of nutrients from simulated swine wastewater by adsorption of modified zeolite combined with struvite crystallization, Chem. Eng. J., 256, 431–438.
J. R. Buchanan, C. R. Mote and R. B. Robinson., 2013, Thermodynamics of Struvite Formation, Trans. ASAE, 37 (2), 617–621.
Khan, A.A., Yudachev, V. and Lew, B., 2016, Feasibility of phosphate precipitation from digested anaerobic sludge in a continuous aerated reactor, Desalin. Water Treat., 57 (51), 24450–24455.
Matynia, A., Koralewska, J., Wierzbowska, B. and Piotrowski, K., 2006, The influence of process parameters on struvite continuous crystallization kinetics, Chem. Eng. Commun., 193 (2), 160–176.
Myerson, A., 2002, Handbook of Industrial Crystallization, 2nd ed., Butterworth-Heinemann.
Nelson, N.O., Mikkelsen, R.L. and Hesterberg, D.L., 2003, Struvite precipitation in anaerobic swine lagoon liquid: Effect of pH and Mg:P ratio and determination of rate constant, Bioresour. Technol., 89 (3), 229–236.
Quintana, M., Sánchez, E., Colmenarejo, M.F., Barrera, J., García, G. and Borja, R., 2005, Kinetics of phosphorus removal and struvite formation by the utilization of by-product of magnesium oxide production, Chem. Eng. J., 111 (1), 45–52.
Rabinovich, A., Rouff, A.A., Lew, B. and Ramlogan, M. V., 2018, Aerated fluidized bed treatment for phosphate recovery from dairy and swine wastewater, ACS Sustain. Chem. Eng., 6 (1), 652–659.
Rahaman, M.S., Ellis, N. and Mavinic, D.S., 2008, Effects of various process parameters on struvite precipitation kinetics and subsequent determination of rate constants, Water Sci. Technol., 57 (5), 647–654.
Rahaman, M.S., Mavinic, D.S., Bhuiyan, M.I.H. and Koch, F.A., 2006, Exploring the determination of struvite solubility product from analytical results, Environ. Technol., 27 (9), 951–961.
Rahman, M.M., Salleh, M.A.M., Rashid, U., Ahsan, A., Hossain, M.M. and Ra, C.S., 2014, Production of slow release crystal fertilizer from wastewaters through struvite crystallization - A review, Arab. J. Chem., King Saud University, 7 (1), 139–155.
Shalaby, M.S. and El-Rafie, S., 2015, Struvite precipitation and phosphorous removal from urine synthetic solution: Reaction kinetic study, Bull. Chem. React. Eng. Catal., 10 (1), 88–97.
Snoeyink, V.L. and Jenkins, D., 1980, WATER CHEMISTRY, John Wiley & Sons, New York.
Soudejani, H.T., Heidarpour, M., Shayannejad, M., Kazemian, H., Shariatmadari, H. and Afyuni, M., 2019, Improving quality of municipal solid waste compost through Mg-modified zeolite, J. Agric. Sci. Technol., 21 (3), 747–760.
Suzuki, K., Tanaka, Y., Kuroda, K., Hanajima, D., Fukumoto, Y., Yasuda, T. and Waki, M., 2007, Removal and recovery of phosphorous from swine wastewater by demonstration crystallization reactor and struvite accumulation device, Bioresour. Technol., 98 (8), 1573–1578.
Wang, H., Wang, X., Chen, J., Xia, P. and Zhao, J., 2016, Recovery of nutrients from wastewater by a MgCl2 modified zeolite and their reuse as an amendment for Cu and Pb immobilization in soil, RSC Adv., 6 (61), 55809–55818.
Wang, H., Wang, X. and Zhao, J., 2019, Application of MgO-modified palygorskite for nutrient recovery from swine wastewater: Effect of pH, Ions, and organic acids, Environ. Sci. Pollut. Res., Environmental Science and Pollution Research, 26 (19), 19729–19737.
Yetilmezsoy, K. and Sapci-Zengin, Z., 2009, Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer, J. Hazard. Mater., 166 (1), 260–269.
Zhang, T., Ding, L. and Ren, H., 2009, Pretreatment of ammonium removal from landfill leachate by chemical precipitation, J. Hazard. Mater., 166 (2–3), 911–915.
DOI: https://doi.org/10.22146/jrekpros.49406
Article Metrics
Abstract views : 3152 | views : 2042Refbacks
- There are currently no refbacks.
Copyright (c) 2020 The authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.