Pemanfaatan Ekstrak Protein dari Kacang-kacangan sebagai Koagulan Alami: Review

https://doi.org/10.22146/jrekpros.46292

Hans Kristianto(1*), Susiana Prasetyo(2), Asaf Kleopas Sugih(3)

(1) Jurusan Teknik Kimia, Fakultas Teknologi Industri, Universitas Katolik Parahyangan, Jl. Ciumbuleuit No.94, Hegarmanah, Bandung 40141
(2) Jurusan Teknik Kimia, Fakultas Teknologi Industri, Universitas Katolik Parahyangan, Jl. Ciumbuleuit No.94, Hegarmanah, Bandung 40141
(3) Jurusan Teknik Kimia, Fakultas Teknologi Industri, Universitas Katolik Parahyangan, Jl. Ciumbuleuit No.94, Hegarmanah, Bandung 40141
(*) Corresponding Author

Abstract


Coagulation and flocculation are commonly used in water and wastewater treatment. Inorganic coagulant such as alum (Al2(SO4)3), ferrous sulphate (FeSO4), and polyaluminium chloride (PAC) are commonly used. These coagulants are known for its effectiveness and simple operation procedure. However, there are some drawbacks such as reduction in pH, potential negative health effect when the treated water is consumed, and large sludge volume. To overcome these problems, utilization of natural coagulants has been proposed. Based on its active coagulating agent, natural coagulant could be divided as polyphenolic, polysaccharides, and protein. Protein from beans and seeds is commonly used as the source of active coagulating agent, due to its effectiveness, availability, and relatively simple pretreatment is needed. Usually the protein is extracted by using 0.5-1 M NaCl solution as globulin is the major protein fraction in beans.The extracted protein could act as cationic polymer to neutralize negatively charged colloids through adsorption-charge neutralization mechanism. Extracted protein could work effectively to treat turbid and waste water with lower cost compared to alum. However, most of existing studies are still focused on small – pilot scale utilization thus further explorations are still needed.


A B S T R A K

Koagulasi dan flokulasi merupakan proses yang umum digunakan dalam pengolahan air dan limbah cair. Pada umumnya digunakan koagulan seperti alum (Al2(SO4)3), ferro sulfat (FeSO4), dan polialuminium klorida (PAC). Selain efektif, koagulasi merupakan proses yang relatif sederhana dan mudah diterapkan. Akan tetapi koagulasi dengan koagulan anorganik memiliki beberapa kekurangan seperti menurunnya pH menjadi asam saat digunakan, potensi gangguan kesehatan jika air hasil pengolahan terkonsumsi, serta volume sludge yang dihasilkan relatif tinggi. Penggunaan koagulan alami menjadi alternatif dalam pengolahan air untuk mengatasi berbagai kekurangan tersebut. Berdasarkan bahan aktif koagulannya, koagulan alami dapat dibagi menjadi polifenol, polisakarida, dan protein. Protein dari kacang-kacangan merupakan salah satu sumber koagulan alami yang umum digunakan, karena selain efektif, kacang-kacangan mudah didapat, serta membutuhkan perlakuan yang relatif sederhana, meliputi pengeringan, pengecilan ukuran, ekstraksi, serta purifikasi. Proses ekstraksi kacang-kacangan pada umumnya menggunakan larutan garam NaCl dengan konsentrasi 0,5-1 M, dikarenakan fraksi protein dominan pada protein kacang-kacangan pada umumnya berupa globulin. Protein yang terekstrak berfungsi sebagai polimer kationik yang cocok digunakan untuk mengolah koloid yang bermuatan negatif melalui mekanisme adsorpsi-netralisasi muatan. Pemanfaatan ekstrak protein dapat bekerja efektif untuk mengolah kekeruhan dan air limbah, dengan biaya yang lebih rendah dibandingkan alum. Akan tetapi pemanfaatannya masih pada skala laboratorium-pilot, sehingga diperlukan pengembangan lebih lanjut untuk isolasi ekstrak serta aplikasinya pada skala industri.


Keywords


ekstraksi; koagulan alami; koagulasi; protein

Full Text:

PDF


References

Abidin, Z. Z., Ismail, N., Yunus, R., Ahamad, I. S. and Idris, A., 2011, A preliminary study on Jatropha curcas as coagulant in wastewater treatment, Environ.Technol., 32(9), 971-977

Abidin, Z. Z., Madehi, N. and Yunus, R., 2017, Coagulative behaviour of Jatropha curcas and its performance in wastewater treatment, Environ. Prog. Sustainable Energy, 36(6), 1709–1718

Abidin, Z. Z., Shamsudin, N. S. M., Madehi, N. and Sobri, S., 2013, Optimisation of a method to extract the active coagulant agent from Jatropha curcas seeds for use in turbidity removal, Ind. Crops Prod., 41, 319– 323

Alghamdi, S. S., 2009, Chemical composition of faba bean (Vicia faba l.) genotypes under various water regimes, Pak. J. Nutr., 8(4), 477-482

Antov, M. G., Šciban, M. B. and Petrovic, N. J., 2010, Proteins from common bean (Phaseolus vulgaris) seed as a natural coagulant for potential application in water turbidity removal, Bioresour.Technol. , 101, 2167–2172

Antov, M. G., Sciban, M. B. and Prodanovic, J. M., 2012, Evaluation of the efficiency of natural coagulant obtained by ultrafiltration of common bean seed extract in water turbidity removal, Ecological Engineering, 49, 48– 52

Asif, M. B., Majeed, N., Iftekhar, S., Habib, R., Fida, S. and Tabraiz, S., 2016, Chemically enhanced primary treatment of textile effluent using alum sludge and chitosan, Desalin. Water Treat., 57, 7280-7286

Audain, E., Ramos, Y., Hermjakob, H., Flower, D. R. and Perez-Riverol, Y., 2016, Accurate estimation of isoelectric point of protein and peptide based on amino acid sequences, Bioinformatics, 32(6), 821-828

Baptista, A. T. A., Silva, M. O., Gomes, R. G., Bergamasco, R., Vieira, M. F. and Vieira, A. M. S., 2017, Protein fractionation of seeds of Moringa oleifera lam and its application in superficial water treatment, Sep. Purif. Technol., 180, 114–124

Barbosa, A. D., Silva, L. F. d., Paula, H. M. d., Romualdo, L. L., Sadoyama, G. and Andrade, L. S., 2018, Combined use of coagulation (M. oleifera) and electrochemical techniques in the treatment of industrial paint wastewater for reuse and/or disposal, Wat. Res., 145, 153-161

Beltrán-Heredia, J. and Sánchez-Martín, J., 2009, Improvement of water treatment pilot plant with Moringa oleifera extract as flocculant agent Environ. Technol., 30(6), 525-534

Beltrán-Heredia, J., Sánchez-Martín, J. and Gómez-Munoz, M. C., 2010, New coagulant agents from tannin extracts: Preliminary optimisation studies, Chem. Eng. J., 162, 1019–1025

Birima, A. H., Ahmed, A. T., Noor, M. J. M. M., Sidek, L. M., Muda, Z. C. and Wong, L. S., 2015, Application of salt extracted peanut seeds in the pretreatment of palm oil mill effluent (POME), Desalin. Water Treat., 55(2196–2200),

Birima, A. H., Hammad, H. A., Desa, M. N. M. and Muda, Z. C., 2013, Extraction of natural coagulant from peanut seeds for treatment of turbid water IOP Conf. Series: Earth and Environmental Science, 16, 1-4

Bolto, B. and Gregory, J., 2007, Organic polyelectrolytes in water treatment, Wat. Res., 41, 2301-2324

Campbell, K. A., Glatz, C. E., Johnson, L. A., Jung, S., Moura, J. M. N. d., Kapchie, V. and Murphy, P., 2011, Advances in aqueous extraction processing of soybeans, J. Am. Oil. Chem. Soc., 88, 449–465

Chen, W. and Berg, J. C., 1993, The effect of polyelectrolyte dosage on floc formation in protein precipitation by polyelectrolytes, Chem. Eng. Sci., 48(10), 1775-1784

Chethana, M., Sorokhaibam, L. G., Bhandari, V. M., Raja, S. and Ranade, V. V., 2016, Green approach to dye wastewater treatment using biocoagulants, ACS Sustainable Chem. Eng., 4(5), 2495–2507

Choi, B. D., Wong, N. A. K. and Auh, J.-H., 2017, Defatting and sonication enhances protein extraction from edible insects, Korean J. Food Sci. Anim. Resour., 37(6), 955–961

Choy, S. Y., Prasad, K. M. N., Wu, T. Y., Raghunandan, M. E. and Ramanan, R. N., 2014, Utilization of plant-based natural coagulants as future alternatives towards sustainable water clarification, J. Environ. Sci., 26(11), 2178-2189

Choy, S. Y., Prasad, K. M. N., Wu, T. Y. and Ramanan, R. N., 2015, A review on common vegetables and legumes as promising plant-based natural coagulants in water clarification, Int. J. Environ. Sci. Technol., 12, 367-390

Choy, S. Y., Prasad, K. N., Wu, T. Y., Raghunandan, M. E. and Ramanan, R. N., 2016, Performance of conventional starches as natural coagulants forturbidity removal, Ecological Engineering, 94, 352-364

Ciabotti, S., Silva, A. C. B. B., Juhasz, A. C. P., Mendonça, C. D., Tavano, O. L., Mandarino, J. M. G. and Gonçalves, C. A. A., 2016, Chemical composition, protein profile, and isoflavones content in soybean genotypes with different seed coat colors, Int. Food Res. J., 23(2), 621-629

Collins, K. D., 2004, Ions from the Hofmeister series and osmolytes: Effects on proteins in solution and in the crystallization process, Methods, 34, 300–311

Dalvand, A., Gholibegloo, E., Ganjali, M. R., Golchinpoor, N., Khazaei, M., Kamani, H., Hosseini, S. S. and Mahvi, A. H., 2016, Comparison of moringa stenopetala seed extract as a clean coagulant with alum and moringa stenopetala-alum hybrid coagulant to remove direct dye from textile wastewater Environ. Sci. Pollut. Res., 23(16), 16396-16405

Dezfooli, S. M., Uversky, V. N., Saleem, M., Baharudin, F. S., Hitam, S. M. S. and T.Bachmann, R., 2016, A simplified method for the purification of an intrinsically disordered coagulant protein from defatted Moringa oleifera seeds, Process Biochem., 51(8), 1085-1091

Fernandez-Quintela, A., Macarulla, M. T., Barrio, A. S. D. and Martinez, J. A., 1997, Composition and functional properties of protein isolates obtained from commercial legumes grown in Northern Spain, Plant Foods Hum. Nutr., 51, 331–342

Folkard, G. and Sutherland, J., 2002, Development of a naturally derived coagulant for water and wastewater treatment, Water Sci Tech-W Sup, 2(5-6), 89–94

Freitas, T. K. F. S., Almeida, C. A., Manholer, D. D., Geraldino, H. C. L., Souza, M. T. F. d. and Garcia, J. C., 2018. Review of utilization plant-based coagulants as alternatives to textile wastewater treatment. in: S. S. Muthu(Eds.),Detox fashion, textile science and clothing technology, Springer Nature Singapore Pte Ltd., pp 27-79.

Garcia-Fayos, B., Arnal, J. M., Sancho, M. and Rodrigo, I., 2016, Moringa oleifera for drinking water treatment: Influence of the solvent and method used in oil extraction on the coagulant efficiency of the seed extract, Desalin. Water Treat., 57(48-49), 23397-23404

Ghebremichael, K., 2007, Overcoming the drawbacks of natural coagulants for drinking water treatment, Water Sci. Tech-W Sup., 7(4), 87–93

Ghebremichael, K. A., Gunaratna, K. R. and Dalhammar, G., 2006, Single-step ion exchange purification of the coagulant protein from Moringa oleifera seed, Appl. Microbiol. Biotechnol., 70, 526-532

Gregory, J., 2006. Particles in water: Properties and processes, Taylor and Francis, London

Gunaratna, K. R., Garcia, B., Andersson, S. and Dalhammar, G., 2007, Screening and evaluation of natural coagulants for water treatment, Water Sci. Technol.: Water Supply, 7(5-6), 19-25

Guo, M. Q., Hu, X., Wang, C. and Ai, L., 2017. Polysaccharides: Structure and solubility. in: Z. Xu(Eds.), Solubility of polysaccharides. IntechOpen.

Haydar, S., Ahmad, H. and Aziz, J. A., 2010, Optimization of coagulation flocculation in the treatment of canal water, Environ. Eng. Manage. J., 9, 1563–1570

Hu, H., Fan, T., Zhao, X., Zhang, X., Sun, Y. and Liu, H., 2017, Influence of pH and salt concentration on functional properties of walnut protein from different extraction methods, J. Food. Sci. Technol., 54(9), 2833–2841

Hussain, G. and Haydar, S., 2019, Exploring potential of pearl millet (Pennisetum glaucum) and black-eyed pea (Vigna unguiculata subsp. unguiculata) as bio-coagulants for water treatment, Desalin. Water Treat., 143, 184-191

Hyde, A. M., Zultanski, S. L., Waldman, J. H., Zhong, Y.-L., Shevlin, M. and Peng, F., 2017, General principles and strategies for salting-out informed by the Hofmeister series, Org. Process Res. Dev., 21(9), 1355−1370

Jadhav, M. V. and Mahajan, Y. S., 2014, Assessment of feasibility of natural coagulants in turbidity removal and modeling of coagulation process, Desalin. Water Treat., 52 (31-33), 5812-5821

Jeon, J.-R., Kim, E.-J., Kim, Y.-M., Murugesan, K., Kim, J.-H. and Chang, Y.-S., 2009, Use of grape seed and its natural polyphenol extracts as a natural organic coagulant for removal of cationic dyes, Chemosphere, 77, 1090–1098

Kristianto, H., Paulina, S. and Soetedjo, J. N. M., 2018, Exploration of various Indonesian indigenous plants as natural coagulant for synthetic turbid water, IJTech, 9(3), 464-471

Kristianto, H., Rahman, H., Prasetyo, S. and Sugih, A. K., 2019, Removal of congo red aqueous solution using Leucaena leucocephala seed’s extract as natural coagulant, Appl. Water Sci., 9(4), Article No 88

Kukic, D. V., Sciban, M. B., Prodanovic, J. M., Tepic, A. N. and Vasic, M. A., 2015, Extracts of fava bean (Vicia faba l.) seeds as natural coagulants, Ecol. Eng., 84, 229-232

Kumar, R., Sharma, K., Tiwary, K. P. and Sen, G., 2013, Polymethacrylic acid grafted psyllium (psy-g-pma): A novel material for waste water treatment, Appl. Water Sci., 3(1), 285-291

Lee, C. S., Robinson, J. and Chong, M. F., 2014, A review on application of flocculants in wastewater treatment, Process Safety and Environmental Protection, 92(6), 489-508

Mainieri, D., Morandini, F., Maîtrejean, M., Saccani, A., Pedrazziniand, E. and Vitale, A., 2014, Protein body formation in the endoplasmic reticulum as an evolution of storage protein sorting to vacuoles: Insights from maize γ-zein, Front. Plant Sci., 5, Article No. 331

Makeri, M. U., Mohamed, S. A., Karim, R., Ramakrishnan, Y. and Muhammad, K., 2017, Fractionation, physicochemical, and structural characterization of winged bean seed protein fractions with reference to soybean, Inter. J. Food Prop., 20(S2), S2220–S2236

Mateus, G. A. P., Formentini-Schmitt, D. M., Nishi, L., Fagundes-Klen, M. R., Gomes, R. G. and Bergamasco, R., 2017, Coagulation/flocculation with Moringa oleifera and membrane filtration for dairy wastewater treatment, Water Air Soil Pollut., 228(9), 1-13

Mateus, G. A. P., Paludo, M. P., Santos, T. R. T. d., Silva, M. F., Nishi, L., Fagundes-Klen, M. R., Gomes, R. G. and Bergamasco, R., 2018, Obtaining drinking water using a magnetic coagulant composed of magnetite nanoparticles functionalized with Moringa oleifera seed extract, J. Environ. Chem. Eng., 6 (4), 4084-4092

Mbogo, S. A., 2008, A novel technology to improve drinking water quality using natural treatment methods in rural tanzania, Environ. Health, 70(7), 46-50

Meng, G. and Ma, C.-Y., 2002, Characterization of globulin from Phaseolus angularis (red bean), Int. J. Food Sci. Technol., 37, 687–695

Mishra, A., Yadav, A., Agarwal, M. and Rajani, S., 2004, Polyacrylonitrile-grafted Plantago psyllium mucilage for the removal of suspended and dissolved solids from tannery effluent, Colloid and Polymer Science, 282(3), 300-303

Mohamed, E. H., Mohammad, T. A., Noor, M. J. M. M. and Ghazali, A. H., 2015, Influence of extraction and freeze-drying durations on the effectiveness of Moringa oleifera seeds powder as a natural coagulant, Desalin. Water Treat., 55(13), 3628-3634

Mohammad, T. A., Mohamed, E. H., Noor, M. J. M. M. and Ghazali, A. H., 2013, Coagulation activity of spray dried salt extracted Moringa oleifera, Desalin. Water Treat., 51(7-9), 1941-1946

Müntz, K., 1998. Globulins from legume seeds: Structure and function during storage and reactivation. in: J. Guéguen and Y. Popineau(Eds.), Plant proteins from European crops. Springer, Berlin, Heidelberg, pp 3-12.

Musa, M., Hamid, K. H. K., Abidin, H. Z. and Rodhi, M. N. M., 2015. Coagulant from chemically modified fish scale for textile wastewater treatment in: M. Hashim(Eds.),ICGSCE 2014, Springer, Singapore, pp 69-77.

Muthuraman, G. and Sasikala, S., 2014, Removal of turbidity from drinking water using natural coagulants, J. Ind. Eng. Chem., 20, 1727–1731

Muyibi, S. and Alfugara, A., 2003, Treatment of surface water with Moringa oleifera seed extract and alum – a comparative study using a pilot scale water treatment plant, Int. J. Environ. Stud., 60(6), 617-626

Muyibi, S. A., Noor, M. J. M. M., Leong, T. K. and Loon, L. H., 2002, Effects of oil extraction from Moringa oleifera seeds on coagulation of turbid water, International Journal of Environmental Studies, 59(2), 243-254

Natarajan, S. S., Pastor-Corrales, M. A., Khan, F. H. and Garrett, W. M., 2013, Proteomic analysis of common bean (Phaseolus vulgaris l.) by two-dimensional gel electrophoresis and mass spectrometry, J. Basic Appl. Sci., 9, 424-437

Ndabigengesere, A., Narasiah, K. S. and Talbot, B. G., 1995, Active agents and mechanism of coagulation of turbid waters using Moringa oleifera, Wat. Res., 29(2), 703-710

Nehete, J. Y., Bhambar, R. S., Narkhede, M. R. and Gawali, S. R., 2013, Natural proteins: Sources, isolation, characterization and applications, Pharmacogn Rev., 7(14), 107–116

Okoli, C., Boutonnet, M., Jaras, S. and Rajarao-Kuttuva, G., 2012, Protein-functionalized magnetic iron oxide nanoparticles: Time efficient potential-water treatment, J. Nanopart. Res., 14, 1194

Okuda, T., Baes, A. U., Nishijima, W. and Okada, M., 1999, Improvement of extraction method of coagulation active components from Moringa oleifera seed, Wat. Res. , 33(15), 3373-3378

Oladoja, N. A., 2015, Headway on natural polymeric coagulants in water and wastewater treatment operations, Journal of Water Process Engineering, 6, 174-192

Oladoja, N. A., Unuabonah, E. I., Amuda, O. S. and Kolawole, O. M., 2017. Polysaccharides as a green and sustainable resources for water and wastewater treatment, Springer.

Ozacar, M. and Sengil, I. A., 2002, The use of tannins from Turkish acorns (valonia) in water treatment as a coagulant and coagulant aid, Turkish K. Eng. Env. Sci, 26, 255-263

Pengchai, P., Keawkhun, K. and Suwapet, N., 2012, Low-cost engineering techniques in sustainable operation of a rural clean water plant in Thailand, Sci. Tech. and Dev., 31(3), 271-279

Pooi, C. K. and Ng, H. Y., 2018, Review of low-cost point-of-use water treatment systems for developing communities, npj Clean Water, 1, Article No 11

Pritchard, M., Craven, T., Mkandawire, T., Edmondson, A. S. and O’Neill, J. G., 2010, A comparison between Moringa oleifera and chemical coagulants in the purification of drinking water – an alternative sustainable solution for developing countries, Physics and Chemistry of the Earth, 35, 798–805

Prodanović, J. M., Antov, M. G., Šćiban, M. B., Ikonić, B. B., Kukić, D. V., Vasić, V. M. and Ivetić, D. Ž., 2013, The fractionation of natural coagulant extracted from common bean by use of ultrafiltration membranes, Desalin. Water Treat., 51(1-3), 442-447

Ramavandi, B., 2014, Treatment of water turbidity and bacteria by using a coagulant extracted from Plantago ovata, Water Res. Ind., 6, 36–50

Rath, S. K. and Singh, R. P., 1997, Flocculation characteristics of grafted and ungrafted starch, amylose, and amylopectin, J. Appl. Polym. Sci. , 66, 1721–1729

Rezende, D., Nishi, L., Coldebella, P. F., Silva, M. F., Vieira, M. F., Vieira, A. M. S., Bergamasco, R. and Fagundes-Klen, M. R., 2016, Groundwater nitrate contamination: Assessment and treatment using Moringa oleifera lam. seed extract and activated carbon filtration, Can. J. Chem. Eng., 94(4), 725-732

Santos, T. R. T., Silva, M. F., Nishi, L., Vieira, A. M. S., Klein, M. R. F., Andrade, M. B., Vieira, M. F. and Bergamasco, R., 2016, Development of a magnetic coagulant based on moringa oleifera seed extract for water treatment, Environ. Sci. Pollut. Res., 23(8), 7692–7700

Santos, T. R. T. d., Mateus, G. A. P., Silva, M. F., Miyashiro, C. S., Nishi, L., Andrade, M. B. d., Fagundes-Klen, M. R., Gomes, R. G. and Bergamasco, R., 2018a, Evaluation of magnetic coagulant (α-Fe2O3-MO) and its reuse in textile wastewater treatment, Water Air Soil Pollut., 229, 92

Santos, T. R. T. d., Silva, M. F., Andrade, M. B. d., Vieira, M. F. and Bergamasco, R., 2018b, Magnetic coagulant based on Moringa oleifera seeds extract and super paramagnetic nanoparticles: Optimization of operational conditions and reuse evaluation, Desalin. Water Treat., 106, 226–237

Sathe, S. K., 2002, Dry bean protein functionality, Crit. Rev. Biotechnol., 22(2), 175–223

Sebei, K., Gnouma, A., Herchi, W., Sakouhi, F. and Boukhchina, S., 2013, Lipids, proteins, phenolic composition, antioxidant and antibacterial activities of seeds of peanuts (Arachis hypogaea l.) cultivated in Tunisia, Biol. Res., 46(3), 257-263

Sethi, P. and Kulkarni, P. R., 1993, Fractionation of Leucaena seed-kernel proteins based on their solubility characteristics, Food Chem., 48, 173-177

Sethi, P. and Kulkarni, P. R., 1994, Chemical composition of Leucaena leucocephala seeds, Inter. J. Food Sci. Nutr., 45, 5-13

Shehata, A. A. Y. and Thannoun, A. M., 1981, Preparation of protein isolates from Iraqi mung beans with their chemical, nutritional and solubility characteristics, J. Plant Foods, 3(4), 265-273

Shewry, P. R., Napier, J. A. and Tatham, A. S., 1995, Seed storage proteins: Structures and biosynthesis, The Plant Cell, 7, 945-956

Shimelis, E. A. and Rakshit, S. K., 2005, Proximate composition and physico-chemical properties of improved dry bean (Phaseolus vulgaris l.) varieties grown in Ethiopia, LWT - Food Sci. Technol., 38(4), 331-338

Siddique, A. B. and Wright, D., 2003, Effects of different drying time and temperature on moisture percentage and seed quality (viability and vigour) of pea seeds (Pisum sativum l.), Asian J. Plant Sci., 2(13), 978-982

Singh, R., Kumar, S. and Garg, M., 2016. Domestic wastewater treatment using tanfloc: A tannin based coagulant in: N. J. Raju(Eds.),Geostatistical and geospatial approaches for the characterization of natural resources in the environment, Springer.

Srinivasan, P. T., Viraraghavan, T. and Subramanian, K. S., 1999, Aluminium in drinking water: An overview, Water SA, 25(1), 47-56

Sutherland, J. P., Folkard, G. K., Mtawali, M. A. and Grant, W. D., 1994, Moringa oleifera as a natural coagulant, 20th WEDC Conference, Colombo, Sri Lanka.

Swamylingappa, B. and Srinivas, H., 1994, Preparation and properties of protein isolate from hexane-acetic acid treated commercial soybean meal, J. Agric. Food Chem., 42(12), 2907–2911

Teh, C. Y., Wu, T. Y. and Juan, J. C., 2014, Optimization of agro-industrial wastewater treatment using unmodified rice starch as a natural coagulant, Industrial Crops and Products, 56, 17–26

Theodoro, J. D. P., Lenz, G. F., Zara, R. F. and Bergamasco, R., 2013, Coagulants and natural polymers: Perspectives for the treatment of water, Plastic and Polymer Technology, 2(3), 55-62

Verma, A. K., Dash, R. R. and Bhunia, P., 2012, A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters, J. Environ. Manage., 93, 154-168

Vijayaraghavan, G. and Shanthakumar, S., 2016, Performance study on algal alginate as natural coagulant for the removal of Congo red dye, Desalin. Water Treat., 57, 6384–6392

Vilkhu, K., Mawson, R., Simons, L. and DarrenBates, 2008, Applications and opportunities for ultrasound assisted extraction in the food industry — a review, Innovative Food Sci. Emerging Technol., 9(2), 161-169

Yin, C.-Y., 2010, Emerging usage of plant-based coagulants for water and wastewater treatment, Process Biochem., 45, 1437-1444

Yongabi, K. A. and Knoll, L., 2015, A biocoagulant slow sand filtration for disinfection of toxoplasma Gondii oocysts Mezam river in bamenda, cameroon, African Journal of Biotechnology, 14(11), 937-943

Yongabi, K. A., Lewis, D. M. and Harris, P. L., 2011a, Indigenous plant based coagulants/disinfectants and sand filter media for surface water treatment in Bamenda, Cameroon, African Journal of Biotechnology, 10(43), 8625-8629

Yongabi, K. A., Lewis, D. M. and Harris, P. L., 2011b, Integrated phyto-disinfectant-sand filter drum for household water treatment in sub-saharan Africa, J. Environ. Sci. Eng., 5, 947–954

Zhang, J., 2012. Protein-protein interactions in salt solutions. in: W. Cai and H. Hong(Eds.),Protein-protein interactions - computational and experimental tools. InTechOpen, China, pp 359-376.



DOI: https://doi.org/10.22146/jrekpros.46292

Article Metrics

Abstract views : 7272 | views : 27403

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 The authors

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.