Change of Graphene with Various Strategies for Photocatalytic Applications: A Review

https://doi.org/10.22146/jrekpros.43765

Whon Chun Oh(1*)

(1) Department of Advanced Materials Science & Engineering, Hanseo University, Chungnam 356-706, South Korea
(*) Corresponding Author

Abstract


Because of its novel molecular 2D structure and momentous physicochemical properties, graphene has been started a whirlwind of the investigation into its optical, electronic, thermal, and mechanical properties. Specifically, a lot of considerations have been pulled in to investigate graphene and graphene composites for photoelectrochemical applications. Many works have been done to synthesize novel graphene-based materials for applications in photoelectrochemistry, such as photoelectrochemical sunlight-based cells, photocatalytic disintegration of natural contaminations, and H2 production. In this article, we abridge the condition of research on graphene-based materials for photoelectrochemistry. The prospects and further improvements in this energizing field of graphene-based materials are additionally discussed.

 

A B S T R A K

Karena struktur 2D dan keunggulan karakteristik fisika-kimia, graphene telah mulai diselidiki secara menyeluruh terhadap sifat optik, elektronik, panas, dan mekanik. Secara khusus, focus dipelukan untuk menyelidiki graphene dan komposit graphene untuk aplikasi fotoelektrokimia. Banyak studi dikerjakan untuk membuat material baru berbasis graphene untuk aplikasi fotoelektrokimia seperti photoelectrochemical sunlight-based cells, fotokatalitik untuk penghilangan kontaminan, dan produksi H2. Pada artikel ini akan disumarisasikan penelitian-penelitian terkait material berbasis graphene untuk aplikasi fotoelektrokimia. Harapan dan perkembangan aplikasi penggunaan material berbasis graphene juga didiskusikan.


Keywords


graphene; H2 evolution; photocatalytic

Full Text:

PDF


References

Areshkin, D. A., and White, C. T., 2007, Building blocks for integrated graphene circuits, Nano Lett., 7, 3253–3259.

Bai, H., Xu, Y. X., Zhao, L., Li, C., and Shi, G. Q., 2009, Non- covalent functionalization of graphene sheets by sulfonated polyaniline, Chem. Commun., 45, 1667–1669.

Du, J. H., and Cheng, H. M., 2012, The fabrication, properties, and uses of graphene/polymer composites, Macromol. Chem. Phys., 213, 1060–1077.

Biswas, M. R. U. D., and Oh, W.C., 2019, Comparative study on gas sensing by a Schottky diode electrode prepared with graphene–semiconductor–polymer nanocomposites, RSC. Adv., 9, 11484-11492

Geim, A. K., Novoselov, K. S., 2007, The rise of graphene, Nat. Mater., 6, 183–191.

Georgakilas, V., Bourlinos, A. B., Zboril, R., Steriotis, T. A., Dallas, P., Stubos, A. K., Trapalis, C., 2010, Organic functionalisation of graphenes, Chem. Commun., 46, 1766–1768.

Green, A. A., and Hersam, M. C., 2009, Solution phase production of Solution Phase Production of Graphene with Controlled Thickness via Density Differentiation, Nano Lett., 9 (12), 4031-4036.

Hirsch, A., Englert, J. M., Hauke, F., 2013, Wet chemical functionalization of graphene, Acc. Chem. Res., 46, 87–96.

Iwan, A., Chuchmała, A., 2012, Perspectives of applied graphene: Polymer solar cells, Prog. Polym. Sci., 37, 1805–1828.

Krishnamoorthy, K., Kim, G. S., Kim, S. J., 2013, Graphene nanosheets: Ultrasound assisted synthesis and characterization, Ultrason. Sonochem., 20, 644–649.

Kuilla, T., Bhadra, S., Yao, D. H., Kim, N. H., Bose, S., Lee, J. H., 2010, Recent advances in graphene-based polymer composites, Prog. Polym. Sci., 35, 1350–1375.

Kuila, T., Bose, S., Khanra, P., Mishra, A. K., Kim, N. H., Lee, J. H., 2011, Recent advances in graphene-based biosensors, Biosens. Bioelectron, 26, 4637–4648.

Li, S. L., Miyazaki, H., Kumatani, A., Kanda, A., Tsukagoshi, K., 2010, Low operating bias and matched input-output characteristics in graphene logic inverters, Nano Lett., 10, 2357–2362.

Lightcap, I. V., Kamat, P. V., 2013, Graphitic design: Prospects of graphene-based nanocomposites for solar energy conversion, storage, and sensing, Acc. Chem. Res., 46, 2235–2243.

Liu, Z., Robinson, J. T., Sun, X. M., Dai, H. J., 2008, PEGylated nanographene oxide for delivery of water-insoluble cancer drugs, J. Am. Chem. Soc., 130, 10876–10877.

Liu, J. Q., Tang, J. G., Gooding, J. J., 2012, Strategies for chemical modification of graphene and applications of chemically modified graphene, J. Mater. Chem., 22, 12435–12452.

Liu, J. Q., Cui, L., Losic, D., 2013, Graphene and graphene oxide as new nanocarriers for drug delivery applications, Acta Biomater., 9, 9243–9257.

Ma, H. M., Wu, D., Cui, Z. T., Li, Y., Zhang, Y., Du, B., Wei, Q., 2013, Graphene-based optical and electrochemical biosensors: A review, Anal. Lett., 46, 1–17.

Maiti, U. N., Lee, W. J., Lee, J. M., Oh, Y., Kim, J. Y., Kim, J. E., Shim, J., Han, T. H., Kim, S. O., 2014, 25th anniversary article: Chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices, Adv. Mater., 26, 40–67.

Maiti, U. N., Lim, J., Lee, K. E., Lee, W. J., Kim, S. O., 2014, Three-dimensional shape engineered, interfacial gelation of reduced graphene oxide for high rate, large capacity supercapacitors, Adv. Mater., 26, 615–619.

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., Firsov, A. A., 2004, Electric field effect in atomically thin carbon films, Science, 306, 666–669.

Novoselov, K. S., Fal’ko, V. I., Colombo, L., Gellert, P. R., Schwab, M. G., Kim, K., 2012, A roadmap for graphene, Nature, 490, 192–200.

Niyogi, S., Bekyarova, E., Itkis, M. E., McWilliams, J. L., Hamon, M. A., Haddon, R. C., 2006, Solution properties of graphite and graphene, J. Am. Chem. Soc., 128, 7720–7721.

Oh, W.C., Nguyen, D.C.T., Ullah, K., Zhu, L., and Areerob, Y., 2019, Fabrication of CdO–graphene embedded mesoporous TiO2 composite for the visible-light response and its organic dye remediation, Separation Science and Technology, doi.org/10.1080/01496395.2019.1602648

Park, J., Yan, M. D., 2013, Covalent functionalization of graphene with reactive intermediates, Acc. Chem. Res., 46, 181–189.

Pumera, M., 2010, Graphene-based nanomaterials and their electrochemistry, Chem. Soc. Rev., 39, 4146–4157.

Pumera, M., 2011, Graphene-based nanomaterials for energy storage, Energy Environ. Sci., 4, 668–674.

Quintana, M., Vazquez, E., Prato, M., 2013, Organic function- alization of graphene in dispersions, Acc. Chem. Res., 46, 138–148.

Ramanathan, T., Abdala, A. A., Stankovich, S., Dikin, D. A., Herrera-Alonso, M., Piner, R. D., Adamson, D. H., Schniepp, H. C., Chen, X., Ruoff, R. S., 2008, Functionalized graphene sheets for polymer nanocomposites, Nat. Nano- technol., 3, 327–331.

Schniepp, H. C., Li, J. L., McAllister, M. J., Sai, H., Herrera-Alonso, M., Adamson, D. H., Prud'homme, R. K., Car, R., Saville, D. A., Aksay, I. A., 2008, Functionalized single graphene sheets derived from splitting graphite oxide, J. Phys. Chem. B., 110, 8535–8539.

Schwierz, F., 2010, Graphene transistors, Nat. Nanotechnol., 5, 487–496.

Soldano, C., Mahmood, A., Dujardin, E., 2010, Production, properties and potential of graphene, Carbon, 48, 2127–2150.

Xu, Y. X., Bai, H., Lu, G. W., Li, C., Shi, G. Q., 2008, Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets, J. Am. Chem. Soc., 130, 5856–5857.

Xu, Y. F., Liu, Z. B., Zhang, X. L., Wang, Y., Tian, J. G., Huang, Y., Ma, Y. F., Zhang, X. Y., Chen, Y. S., 2009, A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property, Adv. Mater., 21, 1275–1279.

Yang, Y. Q., Asiri, A. M., Tang, Z. W., Du, D., Lin, Y. H., 2013, Graphene based materials for biomedical applications, Mater. Today, 16, 365–373.

Zhang, J. L., Shen, G. X., Wang, W. J., Zhou, X. J., Guo, S. W., 2010, Individual nanocomposite sheets of chemically reduced graphene oxide and poly (N-vinyl pyrrolidone): Preparation and humidity sensing characteristics, J. Mater. Chem., 20, 10824–10828.

Zhang, J., Zhao, F., Zhang, Z. P., Chen, N., Qu, L. T., 2013, Dimension-tailored functional graphene structures for energy conversion and storage, Nanoscale, 5, 3112– 3126.



DOI: https://doi.org/10.22146/jrekpros.43765

Article Metrics

Abstract views : 1728 | views : 1228

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 The authors

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.