Pengaruh Organic Loading Rate Pada Produksi Biohidrogen dari Sampah Buah Melon (Cucumis melo L.) Menggunakan Reaktor Alir Pipa

https://doi.org/10.22146/jrekpros.23057

Nurkholis Nurkholis(1*), Sarto Sarto(2), Muslikhin Hidayat(3)

(1) Departemen Teknik Kimia, Fakultas Teknik, Universitas Gadjah Mada Jl. Grafika No.2 Kampus UGM, Yogyakarta, 55281
(2) Departemen Teknik Kimia, Fakultas Teknik, Universitas Gadjah Mada Jl. Grafika No.2 Kampus UGM, Yogyakarta, 55281
(3) Departemen Teknik Kimia, Fakultas Teknik, Universitas Gadjah Mada Jl. Grafika No.2 Kampus UGM, Yogyakarta, 55281
(*) Corresponding Author

Abstract


The energy crisis and adverse effects from the use of fossil fuels requires the development of energy sources that are non-polluting and renewable, such as bio-H2. Bio-H2 can be produced from organic biomass such as melon fruit waste, because it is available in large quantities and has adequate content of organic fraction. Production of bio-H2 from melon fruit waste done by dark fermentation on the pipe flow reactor consisting of microorganisms acclimatization phase and continuous substrate feeding phase with variation of organic loading rate (OLR) are 6.0443 kg VS/ m3.day (OLR1), 7.6217 kg VS/ m3.day (OLR2) and 26.3152 kg VS/ m3.day (OLR3). Gas and liquid samples taken from the reactor for analysis of H2 concentration, volatile solid (VS) and volatile fatty acid (VFA) The results of the study showed that the production of bio-H2 optimal amounted to 90.8904 mL/ g VS on variations OLR3 is 26.3152 kg VS/ m3.day with substrate degradation efficiency reached 45.39%. The concentration of organic acids produced ranges from 400-800 mg/ L and acetic acid as the dominant product with an average concentration of 442.9276 mg/  L.

 

ABSTRAK

Krisis energi dan dampak buruk dari penggunaan bahan bakar fosil menuntut pengembangan sumber energi yang bersifat non-polutif dan terbarukan, misalnya bio-H2. Bio-H2 dapat di produksi dari biomassa organik seperti sampah buah melon, karena terdapat dalam jumlah banyak dan memiliki kandungan fraksi organik yang memadai.  Pada penelitian ini produksi bio-H2 dari sampah buah melon dilakukan secara fermentasi gelap pada reaktor alir pipa yang terdiri dari tahap aklimatisasi mikroorganisme dan tahap pengumpanan substrat secara kontinu. Variasi organic loading rate (OLR) yang digunakan adalah 6.04 kg VS/(m3.hari) (OLR-1), 7.62 kg VS/(m3.hari) (OLR-2) dan 26.32 kg VS/(m3.hari) (OLR-3). Sampel gas dan cairan diambil dari dalam reaktor untuk di analisis kadar H2, kadar volatile solid (VS) dan volatile fatty acid (VFA). Hasil penelitian menunjukkan bahwa produksi bio-H2 yang optimal sebesar 90.89 mL/g VS pada variasi OLR-3 yaitu 26.32 kg VS/(m3.hari) dengan efisiensi degradasi substrat mencapai 45.39%. Konsentrasi asam-asam organik yang dihasilkan berkisar antara 400-800 mg/L dan asam asetat adalah sebagai produk yang dominan dengan konsentrasi rata-rata sebesar 442.93 mg/L.


Keywords


Bio-H2; organic loading rate (OLR); melon fruit waste, plug flow reactor.



References

Arimi, M. M., Knodel, J., Kiprop, A., Namango, S. S., Zhang, Y. and Geiβen, and Sven-Uwe, 2015, Strategies for Improvement of Biohydrogen Production from Organic-Rich Wastewater: A Review, Biomass and Bioenergy, 75, 101-118.

Baghchehsaraee, B., 2009, Batch and Continuous Biohydrogen Production Using Mixed Microbial Culture, Dissertation, The University of Western Ontario, Canada.

Beltran, F. J., Garcia-Araya, J. F., and Alvarez, P. M., 1999, Wine Distillery Wastewater Degradation: Improvement of Aerobical Biodegradation by Means of an Integrated Chemical (Ozone)-biological Treatment, Journal of Agricultural and Food Chemistry, 47 (9), 3919-24.

Chen, C. C., Lin, C. Y., and Lin, M. C., 2002, Acid-base Enrichment Enhances Anaerobic Hydrogen Production Process, Appl Microbiol Biotechnol, 58(2), 224-8.

Fan, K. S., 2006, Effect of Hydraulic Retention Time on Anaerobic Hydrogenesis in CSTR, Bioresource Technology, 97, 84-9. Hawkes, F. R., Hussy, I., Kyazze, G., Dinsdale, R. and Hawkes, D. L., 2007, Continuous Dark Fermentative Hydrogen Production by Mesophilic Microfolora: Principles and Progress, Int. J. Hydrogen Energy, 32(2), 172-84.

Hu, C. C., Giannis, A., Chen, Chia-Lung, Qi, W., and Wang, Jing-Yuan, 2013, Comparative Study of Biohydrogen Production by Four Dark Fermentative Bacteria, Int. J. Hydrogen Energy, 38, 15686-15692. Hussy, I., Hawkes, F. R., Dinsdale, R., and Hawkes, D. L., 2003, Continuous Fermentative Hydrogen Production from a Wheat Starch Co-Product by Mixed Microflora, Biotech Bioeng, 84(6), 619-26.

Hwang, M. H., Jang, N. J., Hyun, S. H. and Kim, I. S., 2004, Anaerobic Biohydrogen Production from Ethanol Fermentation: The Role of pH, J. Biotechnol, 111(3), 297-309. Kinyua, M. N., 2013, Effect of Solids Retention Time on the Denitrification Potential of Anaerobically Digested Swine Waste, Theses and Dissertations, University of South Florida,USA. Logan, B. E., 2004, Extracting Hydrogen and Electricity from Renewable Resources, Enviromental Sci. Tech., 38(9), 160-7.

Ozmihci, S., and Kargi, F., 2011, Dark Fermentative Biohydrogen Production from Wheat Starch Using Co-Culture with Periodic Feeding: Effects of Substrat Loading Rate, Int. J. of Hydrogen Energy, 36, pp. 7089-7093.

Prabhudessai, V., 2013, Anaerobic Digestion of Food Waste in a Horizontal Plug Flow Reactor, Thesis, Institute of Technology and Science Pilani (Rajasthan), India. Vijayaraghavan, K., Ahmad, D., and Bin Ibrahim, M. K., 2006, Biohydrogen Generation from Jackfruit Peel Using Anaerobic Contact Filter, Int. J. Hydrogen, 31, 569-579.



DOI: https://doi.org/10.22146/jrekpros.23057

Article Metrics

Abstract views : 3567 | views : 3703

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 Jurnal Rekayasa Proses

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.