Potential of Compost Enriched with Bacillus velezensis B-27 and Bacillus cereus RC76 for the Management of Twisted Disease on Shallots

https://doi.org/10.22146/jpti.77784

Novi Hervianti Putri(1), Arif Wibowo(2*), Tri Joko(3)

(1) Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada Jln. Flora No. 1, Bulaksumur, Sleman, Yogyakarta 55281 Indonesia
(2) Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada Jln. Flora No. 1, Bulaksumur, Sleman, Yogyakarta 55281 Indonesia
(3) Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada Jln. Flora No. 1, Bulaksumur, Sleman, Yogyakarta 55281 Indonesia
(*) Corresponding Author

Abstract


Shallot (Allium cepa var. aggregatum.) is a horticultural plant that is widely consumed in the world. However, the productivity of shallots in Indonesia is still relatively low, if compared to the actual optimum production potential of shallot. Shallot cultivation in Indonesia often experiences many problems. One of the problems is twisted diseases caused by Fusarium sp. This research aimed to study the effect of the application of organic material enriched with Bacillus in suppressing the development of twisted disease of shallot. This study was arranged in Randomized Complete Block Design (RCBD) with 5 treatments namely (A) compost + Bacillus velezensis isolate B-27, (B) compost + Bacillus cereus isolate RC76, (C) B. velezensis isolate B-27+B. cereus isolate RC76+compost, (D) compost + Trichoderma asperellum and (E) control (compost 1 ton/ha) with 5 replications on glasshouse treatment and 3 replications on field treatment. The results showed that the combination of B. velezensis in compost effectively reduced the incidence of twisted disease, the number of Fusarium spp. colonies, and the number of infected bulbs by Fusarium sp. Besides, the combination of compost with microbial agents showed better results than compost single treatment. 



Keywords


Bacillus spp; Trichoderma; compost; shallot; twisted disease

Full Text:

PDF


References

Andrade, F.C., Fernandes, F., Oliveira Júnior, A., Rondina, A.B.L., Hungria, M., & Nogueira, M.A. (2021). Enrichment of Organic Compost with Beneficial Microorganisms and Yield Performance of Corn and Wheat [Enriquecimento de Composto Orgânico com Microrganismos Benéficos e Desempenho Produtivo do Milho e Trigo]. Revista Brasileira de Engenharia Agrícola e Ambiental, 25(5), 332–339. https://doi.org/10.1590/1807-1929/agriambi.v25n5p332-339

Berger, L.R., Stamford, N.P., Santos, C.E.R.S., Freitas, A.D.S., Franco, L.O., & Stamford, T.C.M. (2013). Plant and Soil Characteristics Affected by Biofertilizers from Rocks and Organic Matter Inoculated with Diazotrophic Bacteria and Fungi that Produce Chitosan. Journal of Soil Science and Plant Nutrition, 13(3), 592–603. https://doi.org/10.4067/S0718-95162013005000047 .

Bernard, R. G. (2005). Modulation of Plant Ethylene Levels by the Bacterial Enzyme ACC Deaminase. FEMS Microbiology Letters, 251, 1–7. http://doi.org/10.1016/j.femsle.2005.07.030

Darsan, S., Sulistyaningsih, E., & Wibowo, A. (2016). Various Shallot Seed Treatments with Trichoderma to Increase Growth and Yield on Sandy Coastal. Ilmu Pertanian, 1(3), 94-99. http://doi.org/10.22146/ipas.12564

de Weert, S., & Bloemberg, G.V. (2006). Rhizosphere Competence and the Role of Toot Colonizaation in Biocontrol. BioControl. In Gnanamanickam, S.S. (Eds.), Plant-Associated Bacteria (pp. 317–333). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4538-7_9

Díaz-Gutiérrez, C., Arroyave, C., Llugany, M., Poschenrieder, C., Martos, S., & Peláez, C. (2021). Trichoderma asperellum as a Preventive and Curative Agent to Control Fusarium Wilt in Stevia rebaudiana. Biological Control, 155, 104537. https://doi.org/10.1016/j.biocontrol.2021.104537

Dwimartina, F., Arwiyanto, T., & Joko, T. (2017). Potential of Endophytic and Rhizobacteria as an Effective Biocontrol for Ralstonia syzygii subsp. syzygii. Asian Journal of Plant Pathology, 11(4), 191–198. https://doi.org/10.3923/ajppaj.2017.191.198

Eiler, A., Langenheder, S., Bertilsson, S., & Tranvik, L.J. (2003). Heterotrophic Bacterial Growth Efficiency and Community Structure at Different Natural Organic Carbon Concentrations. Applied and Environmental Microbiology, 69(7), 3701–3709. https://doi.org/10.1128/AEM.69.7.3701-3709.2003

Food and Agriculture Organization [FAO]. (2020). FAOSTAT: Crops and Livestock Products. Retrieved from http://www.fao.org/faostat/en/#data/QC

Fu, L., Ruan, Y., Tao, C., Li, R., & Shen, Q. (2016). Continous Application of Bioorganic Fertilizer Induced Resilient Culturable Bacteria Community Associated with Banana Fusarium Wilt Suppression. Scientific Reports, 6, 27731. https://doi.org/10.1038/srep27731

Fu, L., Penton, C.R., Ruan, Y., Shen, Z., Xue, C., Li, R., & Shen, Q. (2017). Inducing the Rhizosphere Microbiome by Biofertilizer Application to Suppress Banana Fusarium Wilt Disease. Soil Biology and Biochemistry, 104, 39–48. https://doi.org/10.1016/j.soilbio.2016.10.008

Glick, B.R. (2014). Bacteria with ACC Deaminase Can Promote Plant Growth and Help to Feed the World. FEMS Microbiology Reviews, 169, 30–39. http://doi.org/10.1016/j.micres. 2013.09.009

Gunaratna, L. R., Deshappriya, N., Rajapaksha, S., & Jayaratne, L.D. (2020). Effect of Trichoderma asperellum and Trichoderma virens on Allium cepa L. Growth, Damping off and Basal Rot Disease Incidence and Severity in Sri Lanka. Frontiers in Environmental Microbiology, 6(3), 40-51. https://doi.org/10.11648/j.fem.20200603.13

Hindersah, R., Kalay, A. M., Ngabalin, I. A., Jamlean, M., & Talahaturuson, A. (2021). Organic Matter and Mixed Biofertilizer for Plant Growth and Yield of Shallot Grown in Fertile Soil. IOP Conference Series: Earth and Environmental Science, 883(1), 012067. https://doi.org/10.1088/1755-1315/883/1/012067

Huang, J., Pang, Y., Zhang, F., Huang, Q., Zhang, M., Tang, S., Fu, H., & Li, P. (2019). Suppression of Fusarium Wilt of Banana by Combining Acid Soil Ameliorant with Biofertilizer Made From Bacillus velezensis H-6. European Journal of Plant Pathology, 154(3), 585–596. https://doi.org/10.1007/s10658-019-01683-5

Ibáñez, A., Diez-Galán, A., Cobos, R., Calvo-Peña, C., Barreiro, C., Medina-Turienzo, J., Sánchez-García, M., & Coque, J. J. R. (2021). Using Rhizosphere Phosphate Solubilizing Bacteria to Improve Barley (Hordeum vulgare) Plant Productivity. Microorganisms, 9(8), 1619. https://doi.org/10.3390/microorganisms9081619

Lahlali, R., Ezrari, S., Radouane, N., Kenfaoui, J., Esmaeel, Q., El Hamss, H., Belabess, Z., & Barka, E. A. (2022). Biological Control of Plant Pathogens: A Global Perspective. Microorganisms, 10(3), 596. https://doi.org/10.3390/microorganisms10030596

Lasmini, S. A., Nasir, B., Hayati, N., & Edy, N. (2018). Improvement of Soil Quality Using Bokashi Composting and NPK Fertilizer to Increase Shallot Yield on Dry Land. Australian Journal of Crop Science, 12(11), 1743–1749. https://doi.org/10.21475/ajcs.18.12.11.p1435

Lestiyani, A., Wibowo, A., Subandiyah, S., Gambley, C., Ito, S., & Harper, S. (2016). Identification of Fusarium spp., the Causal Agent of Twisted Disease of Shallot. Acta Horticulturae, 1128, 155–160. https://doi.org/10.17660/ActaHortic.2016.1128.22

Lwin, K. M., Myint, M. M., Tar, T., & Aung, W. Z. M. (2012). Isolation of Plant Hormone (Indole-3-Acetic Acid-IAA) Producing Rhizobacteria and Study on Their Effects on Maize Seedling. Engineering Journal, 16, 137–144. http://doi.org/10.4186/ej.2012.165.137

Manurung, A. I., Sirait, B. A., Hulu, T., & Marpaung, R. G. (2019). Pemberian Pupuk Nitrogen dan Pupuk Organik Granul terhadap Pertumbuhan dan Produksi Bawang Merah (Allium cepa L.). Agrotekma: Jurnal Agroteknologi dan Ilmu Pertanian, 4(1), 21-27. https://doi.org/10.31289/agr.v4i1.2750

Marrelli, M., Amodeo, V., Statti, G., & Conforti, F. (2019). Biological Properties and Bioactive Components of Allium cepa L.: Focus on Potential Benefits in the Treatment of Obesity and Related Comorbidities. Molecules, 24(1). https://doi.org/10.3390/molecules24010119

Nifakos, K., Tsalgatidou, P.C., Thomloudi, E.E., Skagia, A., Kotopoulis, D., Baira, E., Delis, C., Papadimitriou, K., Markellou, E., Venieraki, A., & Katinakis, P. (2021). Genomic Analysis and Secondary Metabolites Production of the Endophytic Bacillus velezensis Bvel1: A Biocontrol Agent against Botrytis cinerea Causing Bunch Rot in Post-Harvest Table Grapes. Plants, 10(8), 1716. https://doi.org/10.3390/plants10081716

Pal, K. K., & McSpadden Gardener, B. (2006). Biological Control of Plant Pathogens. The Plant Health Instructor. 1-25. https://doi.org/10.1094/PHI-A-2006-1117-02

Rabbee, M.F., Sarafat Ali, M., Choi, J., Hwang, B.S., Jeong, S.C., & Baek, K.-H. (2019). Bacillus velezensis: A Valuable Member of Bioactive Molecules within Plant Microbiomes. Molecules, 24(6), 1046. https://doi.org/10.3390/molecules24061046

Rahma, A. A., Suryanti, Somowiyarjo, S., & Joko, T. (2020). Induced Disease Resistance and Promotion of Shallot Growth by Bacillus velezensis B-27. Pakistan Journal of Biological Sciences, 23(9), 1113–1121. https://doi.org/10.3923/pjbs.2020.1113.1121

Shen, Z., Zhong, S., Wang, Y., Wang, B., Mei, X., Li, R., Ruan, Y., & Shen, Q. (2013). Induced Soil Microbial Suppression of Banana Fusarium Wilt Disease Using Compost and Biofertilizers to Improve Yield and Quality. European Journal of Soil Biology, 57, 1–8. https://doi.org/10.1016/j.ejsobi.2013.03.006

Singh, A., Singh, V.K., Dwivedy, A.K., Deepika, Tiwari, S., Dwivedi, A., & Dubey, N.K. (2020). Biological Control of Plant Diseases: Opportunities and Limitations. In Varma, A., Tripathi, S., Prasad, R. (Eds.), Plant Microbiome Paradigm (pp. 121–146). Springer, Cham. https://doi.org/10.1007/978-3-030-50395-6_7

Sumardiyono, C., Wibowo, A., & Suryanti. (2007). Pengendalian Penyakit Layu Pisang Dengan Fusarium Non Patogenik dan Fluorescent Pseudomonads. Jurnal Perlindungan Tanaman Indonesia, 13(2), 142–150.

Sun, E.J. (1978). Identification of Fusarium oxysporum f. sp. cubense Race 4 from Soil or Host Tissue by Cultural Characters. Phytopathology, 68(11), 1672. https://doi.org/10.1094/phyto-68-1672

Torbaghan, M.E., Lakzian, A., Astaraei, A. R., Fotovat, A., & Besharati, H. (2016). Quantitative Comparison of Ammonia and 3-Indoleacetic Acid Production in Halophilic, Alkalophilic and Haloalkalophilic Bacterial Isolates in Soil. Journal of Fundamental and Applied Science, 8(2), 653–673. https://doi.org/10.4314/jfas.8vi2s.80

Velmurugan, A., Sakthivel, K., Swarnam, T.P., Rachael, S., & Roy, D.S. (2015). Assessment of the Plant Growth Promotion and Phosphorus Solubilization by Rhizosphere Bacteria Isolated from Troporthents Soils of Bay Island. Trends in Biosciences, 8(11), 2888–2892.

Wang, C., Hu, H. J., Li, X., Wang, Y.F., Tang, Y.Y., Chen, S.L., & Yan, S.Z. (2018). Effects of Varying Environmental Factors on the Biological Control of Meloidogyne incognita in Tomato by Bacillus cereus strain BCM2. Biocontrol Science and Technology, 28(4), 359–376. https://doi.org/10.1080/09583157.2018.1450489

Wu, X., Shan, Y., Li, Y., Li, Q., & Wu, C. (2020). The Soil Nutrient Environment Determines the Strategy by Which Bacillus velezensis HN03 Suppresses Fusarium Wilt in Banana Plants. Frontiers in Plant Science, 11, 599904. https://doi.org/10.3389/fpls.2020.599904

Wulan, E.I.R. Wibowo, A., Joko, T., & Widiastuti, A. (2022). Induced Resistance Mechanism of Twisted Disease Suppression of Shallot by Bacillus spp. Jurnal Perlindungan Tanaman Indonesia, 26 (1), 40-50. https://doi.org/10.22146/jpti.73198

Xu, T., Zhu, T., & Li, S. (2016). β-1,3-1,4-Glucanase Gene from Bacillus velezensis Zj20 Exerts Antifungal Effect on Plant Pathogenic Fungi. World Journal of Microbiology and Biotechnology, 32, 26. https://doi.org/10.1007/s11274-015-1985-0

Yanuarti, A.R., & Afsari, M.D. (2016). Commodity Profile - Staple and Important Goods: Red Onion, Staple Goods Market Monitoring System. Ministry of Commerce Republic of Indonesia, Jakarta.

Ye, X., Wang, C., Ng, T.B., & Zhang, W. (2021). Study on the Biocontrol Potential of Antifungal Peptides Produced by Bacillus velezensis against Fusarium solani that Infects the Passion Fruit Passiflora edulis. Journal of Agricultural and Food Chemistry, 69(7), 2051–2061. https://doi.org/10.1021/acs.jafc.0c06106

Zhang, B., Zhang, P., & Chen, X. (2000). Factors Affecting Colonization of Introduced Microorganisms on Plant Roots [in Chinese]. Ying Yong Sheng Tai Xue Bao, 11(6), 951-953. Retrieved from https://pubmed.ncbi.nlm.nih.gov/11767580/

Zhou, H., Ren, Z.H., Zu, X., Yu, X.Y., Zhu, H.J., Li, X.J., Zhong, J., & Liu, E.M. (2021). Efficacy of Plant Growth-Promoting Bacteria Bacillus cereus YN917 for Biocontrol of Rice Blast. Frontiers in Microbiology, 12, 1–9. https://doi.org/10.3389/fmicb.2021.684888



DOI: https://doi.org/10.22146/jpti.77784

Article Metrics

Abstract views : 923 | views : 521

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Jurnal Perlindungan Tanaman Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Jurnal Perlindungan Tanaman Indonesia ISSN 1410-1637 (print), ISSN 2548-4788 (online) is published by the Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, in collaboration with Indonesian Entomological Society (Perhimpunan Entomologi Indonesia, PEI) and Indonesian Phytopathological Society (Perhimpunan Fitopatologi Indonesia, PFI). The content of this website is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

View website statistics