Potency of Salicylic Acid to Disrupt the Growth and Development of Papaya Mealybug, Paracoccus marginatus (Hemiptera: Pseudococcidae)

https://doi.org/10.22146/jpti.29656

Liza Octriana(1*), Nugroho Susetya Putra(2), Suputa Suputa(3)

(1) Research Institute for Tropical Fruit Plants Jln. Raya Solok-Aripan Km.8, Solok-West Sumatera 27301
(2) Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada Jln. Flora No. 1, Bulaksumur, Sleman, Yogyakarta 55281
(3) Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada Jln. Flora No. 1, Bulaksumur, Sleman, Yogyakarta 55281
(*) Corresponding Author

Abstract


Mealybug is an important pest of papaya plants. Induction of plant resistance using elicitors, such as salicylic acid, might have the potency to reduce the extent of crop damage by mealybug. Therefore, a laboratory experiment was performed to determine the effect of salicylic acid on feeding preference, fecundity, oviposition period, and longevity of papaya mealybug adult, Paracoccus marginatus. The results showed that the application of salicylic acid increased total phenol content on papaya leaf (r = 0.57) hence decreased in feeding preferences and fecundity, slowed down the growth period of the nymph and pre-oviposition period, and prolonged the longevity of mealybug. The potency of using salicylic acid to control of mealybug on papaya in integrated pest management was discussed in this paper.


Keywords


mealybug papaya; Paracoccus marginatus; salicylic acid

Full Text:

PDF


References

Afifi, M.A., F.S. Ali, E.A. Shalaby, E.M.A. Saiedy, & M.M. Ahmed. 2015. Enhancement of Resistance in Tomato Plants Using Different Compounds against the Two Spotted Spider Mites Tetranycus urticae Koch. Journal of Environmental Science 9: 119−136.

Chen, Z., J. Malamy, J. Henning, U. Conrath, P. Sanchez-Casaz, H. Silva, J. Ricigliano, & D.F. Klessieg. 1995. Induction, Modification, and Transduction of the Salicylic Acid Signal in Plant Defense Response. Proceedings of The National Academy of Science USA 92: 4134−4137.

Cipollini, D.F., S. Enright, B. Traw, & J. Bergelson. 2004. Salicylic Acid Inhibit Jasmonic Acid Induced Resistance of Arabidopsis thaliana to Spodoptera exigua. Molecular Ecology 13: 1643−1653.

Damodaram, K.J.P., R.M. Aurade, V. Kempraj, T.K. Roy, K.S. Shivashankara, & A. Verghese. 2015. Salicylic Acid Induces Changes in Mango Fruit that Affect Oviposition Behavior and Development of the Oriental Fruit Fly, Bactrocera dorsalis. PLOS One 10: 1−18.

Dempsey, M.A, & D.F. Klessig, 2017. How Does Multifaceted Plant Hormone Salicylic Acid Combat Disease in Plants and Are Similar Mechanism Utilized in Humans? BMC Biology 15: 1−11.

Doyle, M., P.G. Waterman, C.N. Mbi, J.S. Gartlan, & T.T. Struhsaker. 1978. Phenolic Content of Vegetation in Two African Rain Forests: Ecological Implications. Science 202: 61−64.

Dudt, J.F., & D.J. Shure. 1994. The Influence of Light and Nutrients on Foliar Phenolics and Insect Herbivory. Ecology 75: 86−98.

Elhamahmy, M.A.M., M.F. Mahmoud & T.Y. Bayoumi. 2016. The Effect Applying Exogenous Salicylic Acid on Aphid Infection and its Influence on Histo-physiological Traits and Thermal Imaging of Canola. Cercetari Agronomice in Moldova 49: 67−85.

Farouk, S. & M.A. Osman. 2011. The Effect of Plant Defense Elicitors on Common Bean (Phaseolus vulgaris L.) Growth and Yield in Absence or Presence of Spider Mite (Tetranichus urticae Koch.) Infestation. Journal of Stress Physiology and Biochemistry 7: 5−22.

Hayat, Q., S. Hayat, M. Irfan, & A. Ahmad. 2010. Effect of Exogenous Salicylic Acid under Changing Environment. Environmental and Experimental Botany 68:14−25.

Hoerussalam, A. Purwantoro, & A. Khaeruni. 2013. Induksi Ketahanan Tanaman Jagung (Zea mays L.) terhadap Penyakit Bulai Melalui Seed Treatment serta Pewarisannya pada Generasi S1. Ilmu Pertanian 16: 42−59.

Isenring, R. 2010. Pesticides and the Loss of Biodiversity. How Intensive Pesticide Use Affects Wildlife Populations and Species Diversity. Pesticide Action Network Europe, London. 26 p.

Janda, T., O.K. Gondor, R. Yordanova, G. Szalai, & M. Pál. 2014. Salicylic Acid and Photosynthesis: Signaling and Effect. Acta Physiologiae Plantarum 36: 2537−2546.

Kawano, T., T. Furuichi, & S. Muto. 2004. Controlled Salicylic Acid Levels and Corresponding Signaling Mechanism in Plants. Plant Biotechnology 21: 319−335.

Krisnan, J.U., M. George, G. Ajesh, J.R. Jithine, N.R. Leksmi, & M.I. Deepasree. 2016. A Review on Paracoccus marginatus Williams, Papaya Mealybug (Hemiptera: Pseudococcidae). Journal of Entomology and Zoology Studies 4: 528−533.

Lennon, A.M., U.H. Neuenschwander, M. Ribas- Carbo, L. Giles, J.A. Ryals, & J.N. Siedow. 1997. The Effects of Salicylic Acid and Tobacco Mosaic Virus infection on the Alternative Oxidase of Tobacco. Plant Physiology 115: 783−791.

Mahmoud, M.F. 2013. Induced Plant Resistance as a Pest Management Tactic on Piercing Sucking Insects of Sesame Crop. Arthropod 2: 137−149.

Mahmoud, M.F., & H.M. Mahfouz. 2015. Effects of Salicylic Acid Elicitor against Aphid on Wheat Detection of Infestation Using Infrared Thermal Imaging Technique in Ismailia, Egypt. Pesticides and Phytomedicine 30: 91−97.

Mariyono, J. & Irham. 2001. Usaha Menurunkan Penggunaan Pestisida Kimia dengan Program Pengendalian Hama Terpadu. Manusia dan Lingkungan 8: 30−36.

Martanto, E.A., C. Sumardiyono, H. Semangun, & B. Hadisutrisno. 2003. Peranan Asam Salisilat pada Interaksi Inang Patogen Penyakit Kudis Ubi Jalar (Elsinoe batatas). Jurnal Perlindungan Tanaman Indonesia 9: 92−98.

Mastoi, M.I., A.N. Azura, R. Muhammad, A.B. Idris, & Y. Ibrahim. 2011. First Report of Papaya Mealybug Paracoccus marginatus (Hemiptera: Pseudococcidae) from Malaysia. Australian Journal of Basic and Applied Sciences 5: 1247−1250.

Meyerdirk, R.E., R. Muniappan, R. Warkentin, J. Bamba, & G.V.P. Reddy. 2004. Biological Control of Papaya Mealybug, Paracoccus marginatus (Hemiptera: Pseudococcidae) in Guam. Plant Protection Quarterly 19: 110−114.

Michael, P., M.P. Donovan, E.H. Delucia, & P.D. Nabity. 2013. Salicylic Acid Mediated Reductions in Yield in Nicotiana Attenuated Challenged by Aphid Herbivory. Arthropod-Plant Interactions 7: 45−52.

Muniappan, R., B.M. Shepard, G.W. Watson, G.R. Carner, D. Sartiami, A. Rauf & M.D. Hammig. 2008. First Report of the Papaya Mealybug, Paracoccus marginatus (Hemiptera: Pseudo coccidae), in Indonesia and India. Journal of Agricultural and Urban Entomology 25: 37−40.

Ollerstam, O. & S. Larsson. 2003 Salicylic Acid Mediates Resistance in the Willow Salix viminalis against the Gall Midge Dasineura marginemtorquens. Journal of Chemical Ecology 29: 163−174.

Qiu, B.L., J.A. Harvey, C.E. Raaijmakers, L.E.M. Vet & N.M.V. Dam. 2009. Non Linear Effects of Plant Root and Shoot Jasmonic Acid Application on the Performance of Pieris brassicae and its Parasitoid Cotesia glomerata. Functional Ecology 23: 496−505.

Rana, M.S.T., N. Sarwar, H. Imranul, S. T. Sahi, & M.D. Gogi. 2016. Dual Efficacy of Safe Chemical against Myzus persicae and Cucumber Mosaic Virus in Tomato. Science International Lahore 28: 1279−1283.

Santamaria, M.E., M. Martinez, I. Cambra, V. Grbic, & I. Diaz. 2013. Understanding Plant Defense Response against Herbivore Attacks: An Essential First Step towards the Development of Sustainable Resistance against Pest. Transgenic Research 22: 697−708.

San Vicente, M.R. & J. Plasencia. 2011. Salicylic acid Beyond Defence Its Role in Plant Growth and Development. Journal of Experimental Botany 62: 3321−3338.

Sekido, S. & K. Sogawa. 1976. Effects of Salicylic Acid on Probing and Oviposition of the Rice Plant-and Leafhopper. Applied Entomology Zoology 11: 75–81.

Senter, S.D., J. A. Robertson, & F.I. Meredith. 1989. Phenolic Compound of the Mesocarp of Cresthaven Peaches during Storage and Ripening. Journal of Food Science 54: 1259−1268.

Shi, X., G. Chen, L. Tian, Z. Peng, W. Xie, Q. Wu, S. Wang, X. Zhou & Y. Zhang. 2016. The Salicylic Acid Mediated Release of Plant Volatile Affects the Host Choice of Bemisia tabaci. International Journal of Molecular Science 17: 1−11.

Shoorooei, M., M. Lotfi, A. Nabipour, A.I. Mansouri, K. Kheradmand, F.G. Zhalom, E. Madadkhah, & A. Parsafar. 2013. Antixenosis and Antibiosis of Some Melon (Cucumis melo) Genotypes to the Two-spotted Spider Mite (Tetranichus urticae) and a Possible Mechanism for Resistance. Journal of Horticultural Science and Biotechnology 88: 73−78.

Suartini, N.M., N.W. Sudatri, & N.L. Watiniasih. 2015. Diversitas Serangga pada Perkebunan Pepaya (Carica papaya L.) di Daerah Sanur, Denpasar Bali. Metamorfosa 2: 82−89.

Suganda, T. 2001. Penginduksian Resistensi Tanaman Kacang Tanah terhadap Penyakit Karat (Puccinia arachidis Speg.) dengan Pengaplikasian Asam Salisilat, Asam Asetat Etilindiamintetra, Kitin Asal Kulit Udang, Air Perasan Daun Melati, dan Dikalium Hidrogen Fosfat. Agrikultura 20: 83−88.

Sujatmiko, B., E. Sulistyaningsih & R.H. Murti. 2012. Studi Ketahanan Melon (Cucumis melo L.) terhadap Layu Fusarium secara in Vitro dan Kaitannya dengan Asam Salisilat. Ilmu Pertanian 15: 1−18.

Suryanti, Y.D. Chinta, & C. Sumardiyono. 2009. Pengimbasan Ketahanan Pisang terhadap Penyakit Layu Fusarium dengan Asam Salisilat in Vitro. Jurnal Perlindungan Tanaman Indonesia 15: 90−95.

Tanwar, R.K., P. Jayakumar, & S. Vennila. 2010. Papaya Mealybug and its Management Strategies. Technical Bulletin 22. National Centre For Integrated Pest Management, New Delhi. 22 p.

Thakur, M. & B.S. Sohal. 2013. Role of Elicitor in Inducing Resistance in Plants against Pathogen Infection: A Review. International Scholarly Research Notices Biochemistry 2013: 1−10.

Thaler, J.S., A.L. Fidantsef, & R.M. Bostock. 2002. Antagonism Between Jasmonate and Salicylate – Mediated Induced Plant Resistance: Effects of Concentration and Timing of Elicitation on Defense Related Proteins, Herbivore, and Pathogen Performance in Tomato. Journal of Chemical Ecology 28: 1131−1159.

Thaler, J.S., A.A. Agrawal, & R. Halitschke. 2010. Salicylate-Mediated Interactions between Pathogen and Herbivores. Ecology 9: 1075−1082.

War, A.R., M.G. Paulraj, M.Y. War, & S. Ignacimuthu. 2011. Role of Salicylic Acid in Induction of Plant Defense System in Chickpea (Cicer arietinum L.). Plant Signal Behavior 6: 1787−1792.

War, A.R., M.G. Paulraj, T. Ahmad, A.A. Buhroo, B. Hussain, S. Ignacimuthu, & H.C. Sharma. 2012. Mechanisms of Plant Defense against Insect Herbivores. Plant Signal Behavior 7: 1306–1320.

War, A.R., B. Hussain, & H.C. Sharma. 2013. Induced Resistance in Groundnut by Jasmonic Acid and Salicylic Acid through Alteration of Trichome Density and Oviposition Helicoverpa armigera (Lepidoptera: Noctuidae). AoB Plants 5: 1−6.

War, A.R., M.G. Paulraj, S. Ignacimuthu, & H.C. Sharma. 2015. Induced Resistance to Helicoverpa armigera through Exogenous of Jasmonic Acid and Salicylic Acid in Groundnut, Arachis hypogaea. Pest Management Science 71: 72−82.

Zhang, P., X. Zhu, F. Hang, Y. Liu, J. Zhang, Y. Lu, & Y. Ruan. 2011. Suppression of Jasmonic Acid- Dependent Defense in Cotton Plant by the Mealybug Phenacoccus solenopsis. PLOS One 6: 1−9.

Zhang, P., F. Hang, J. Zhang, J. Wei, & Y. Lu. 2015. The Mealybug Phenacoccus solenopsis Suppresses Plant Defense Responses by Manipulating JA- SA Crosstalk. Scientific Report 5: 1−7.



DOI: https://doi.org/10.22146/jpti.29656

Article Metrics

Abstract views : 2458 | views : 1791

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Jurnal Perlindungan Tanaman Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Jurnal Perlindungan Tanaman Indonesia ISSN 1410-1637 (print), ISSN 2548-4788 (online) is published by the Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, in collaboration with Indonesian Entomological Society (Perhimpunan Entomologi Indonesia, PEI) and Indonesian Phytopathological Society (Perhimpunan Fitopatologi Indonesia, PFI). The content of this website is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

View website statistics